Question

In: Computer Science

Computer Graphics: 1. Prove that two successive 2D rotations are additive: R(α1)R(α2) = R(α1+α2), where R(α)...

Computer Graphics:

1. Prove that two successive 2D rotations are additive: R(α1)R(α2) = R(α1+α2), where R(α) denotes a 2x2 rotation matrix of rotation angle α.

(Recall that sin(α1+α2) = sinα1cosα2+ cosα1sinα2, and cos(α1+α2) = cosα1cosα2−sinα1sinα2.)

Solutions

Expert Solution


Related Solutions

Prove the following two statements: If the permutation α is even then α^-1 is even. If...
Prove the following two statements: If the permutation α is even then α^-1 is even. If the permutation α is odd then α^-1 is odd.
Prove or disprove: two consecutive rotations about two different axis are commutative. That is, is RuRv...
Prove or disprove: two consecutive rotations about two different axis are commutative. That is, is RuRv = RvRu? (Hint: For simplicity, you can assume that the axis u is the x-axis and v is the y-axis without loss of gnerality).
Prove or disprove: two consecutive rotations about two different axis are commutative. That is, is RuRv...
Prove or disprove: two consecutive rotations about two different axis are commutative. That is, is RuRv = RvRu? (Hint: For simplicity, you can assume that the axis u is the x-axis and v is the y-axis without loss of generality).
1. Prove or disprove: if f : R → R is injective and g : R...
1. Prove or disprove: if f : R → R is injective and g : R → R is surjective then f ◦ g : R → R is bijective. 2. Suppose n and k are two positive integers. Pick a uniformly random lattice path from (0, 0) to (n, k). What is the probability that the first step is ‘up’?
Prove 1. For each u ∈ R n there is a v ∈ R n such...
Prove 1. For each u ∈ R n there is a v ∈ R n such that u + v= 0 2. For all u, v ∈ R n and a ∈ R, a(u + v) = au + av 3. For all u ∈ R n and a, b ∈ R, (a + b)u = au + bu 4.  For all u ∈ R n , 1u=u
Question 1. Equivalence Relation 1 Define a relation R on by iff . Prove that R...
Question 1. Equivalence Relation 1 Define a relation R on by iff . Prove that R is an equivalence relation, that is, prove that it is reflexive, symmetric, and transitive. Determine the equivalence classes of this relation. What members are in the class [2]? How many members do the equivalence classes have? Do they all have the same number of members? How many equivalence classes are there? Question 2. Equivalence Relation 2 Consider the relation from last week defined as:...
let G = D2n = {e,r,r^2,...,rn-1,s,sr,sr2,..,srn-1} a diedergroup of order 2n, where n >=3 (a) prove...
let G = D2n = {e,r,r^2,...,rn-1,s,sr,sr2,..,srn-1} a diedergroup of order 2n, where n >=3 (a) prove that [G,G] = <r2> (b) prove that G/[G,G] consists of two elements if n is uneven and 4 elements if n is even
In a two-tailed test for correlation at α = .05, a sample correlation coefficient r =...
In a two-tailed test for correlation at α = .05, a sample correlation coefficient r = 0.42 with n = 25 is significantly different than zero. True or False
(1)Prove that for every a, b ∈ R, |a + b| = |a| + |b| ⇐⇒...
(1)Prove that for every a, b ∈ R, |a + b| = |a| + |b| ⇐⇒ ab ≥ 0. Hint: Write |a + b| 2 = (|a| + |b|) 2 and expand. (2) Prove that for every x, y, z ∈ R, |x − z| = |x − y| + |y − z| ⇐⇒ (x ≤ y ≤ z or z ≤ y ≤ x). Hint: Use part (1) to prove part (2).
Let R[x, y] be the set of polynomials in two coefficients. Prove that R[x, y] is...
Let R[x, y] be the set of polynomials in two coefficients. Prove that R[x, y] is a vector space over R. A polynomial f(x, y) is called degree d homogenous polynomial if the combined degree in x and y of each term is d. Let Vd be the set of degree d homogenous polynomials from R[x, y]. Is Vd a subspace of R[x, y]? Prove your answer.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT