In: Math
what is the difference between mutually exclusive, independent and conditional probabilities?
Mutually exclusive:
Events are mutually exclusive if the occurrence of one event excludes the occurrence of the other(s). Mutually exclusive events cannot happen at the same time. For example: when tossing a coin, the result can either be heads or tails but cannot be both.
If Events A and B are mutually exclusive, then P(A and B) = 0
Events are independent if the occurrence of one event does not influence (and is not influenced by) the occurrence of the other(s). For example: when tossing two coins, the result of one flip does not affect the result of the other.
If Events A and B are independent then P(A and B) = P(A) P(B)
The conditional probability of an event B is the probability that the event will occur given the knowledge that an event A has already occurred. This probability is written P(B|A), notation for the probability of B given A. In the case where events A and B are independent (where event A has no effect on the probability of event B), the conditional probability of event B given event A is simply the probability of event B, that is P(B).
If Events A and B are not independent
P(A and B) = P(A) P(B|A);
P(B|A) = Conditional Probability of the event B given that Event A has already occured.
In a card game, suppose a player needs to draw two cards of the same suit in order to win. Of the 52 cards, there are 13 cards in each suit. Suppose first the player draws a heart. Now the player wishes to draw a second heart. Since one heart has already been chosen, there are now 12 hearts remaining in a deck of 51 cards. So the conditional probability P(Draw second heart|First card a heart) = 12/51.