Question

In: Math

The table below gives the age and bone density for five randomly selected women. Using this...

The table below gives the age and bone density for five randomly selected women. Using this data, consider the equation of the regression line, yˆ=b0+b1x', for predicting a woman's bone density based on her age. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line to make a prediction if the correlation coefficient is not statistically significant.

Age 40 41 42 43 63
Bone Density 353 344 328 326 322

Table

Copy Data

Step 1 of 6:

Find the estimated slope. Round your answer to three decimal places.

Step 2 of 6:

Find the estimated y-intercept. Round your answer to three decimal places.

Step 3 of 6:

Determine if the statement "Not all points predicted by the linear model fall on the same line" is true or false.

Step 4 of 6:

Substitute the values you found in steps 1 and 2 into the equation for the regression line to find the estimated linear model. According to this model, if the value of the independent variable is increased by one unit, then find the change in the dependent variable yˆ.

Step 5 of 6:

Find the estimated value of y when x=42. Round your answer to three decimal places.

Step 6 of 6:

Find the value of the coefficient of determination. Round your answer to three decimal places.

Solutions

Expert Solution

X Y X * Y X2 Y2
40 353 14120 1600 124609
41 344 14104 1681 118336
42 328 13776 1764 107584
43 326 14018 1849 106276
63 322 20286 3969 103684
Total 229 1673 76304 10863 560489

Equation of regression line is Ŷ = a + bX

b = ( 5 * 76304 - 229 * 1673 ) / ( 5 * 10863 - ( 229 )2)
b = -0.852
a =( Σ Y - ( b * Σ X) ) / n
a =( 1673 - ( -0.8522 * 229 ) ) / 5
a = 373.63
Equation of regression line becomes Ŷ = 373.6302 - 0.8522 X

Step 1

Slope of regression line is  b = -0.852

Step 2

Y intercept of regression line is   a = 373.63

Step 3

Looking at the scatter plot statement Not all points predicted by the linear model fall on the same line is true

Step 4

Ŷ = 373.6302 - 0.8522 X

Ŷ = 373.6302 - 0.8522 (1)

Ŷ = 372.78

Step 5

When X = 42
Ŷ = 373.63 + -0.852 X
Ŷ = 373.63 + ( -0.852 * 42 )
Ŷ = 337.85

Step 6



r = -0.622

Coefficient of Determination
R2 = r2 = 0.387


Related Solutions

The table below gives the age and bone density for five randomly selected women. Using this...
The table below gives the age and bone density for five randomly selected women. Using this data, consider the equation of the regression line, yˆ=b0+b1x, for predicting a woman's bone density based on her age. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line to make a prediction if the correlation coefficient is not statistically significant. Age 36 51...
The table below gives the age and bone density for five randomly selected women. Using this...
The table below gives the age and bone density for five randomly selected women. Using this data, consider the equation of the regression line, yˆ=b0+b1x, for predicting a woman's bone density based on her age. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line to make a prediction if the correlation coefficient is not statistically significant. Age 36 40...
The table below gives the age and bone density for five randomly selected women. Using this...
The table below gives the age and bone density for five randomly selected women. Using this data, consider the equation of the regression line, yˆ=b0+b1x, for predicting a woman's bone density based on her age. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line to make a prediction if the correlation coefficient is not statistically significant. Age 39 59...
The table below gives the age and bone density for five randomly selected women. Using this...
The table below gives the age and bone density for five randomly selected women. Using this data, consider the equation of the regression line, yˆ=b0+b1x, for predicting a woman's bone density based on her age. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line to make a prediction if the correlation coefficient is not statistically significant. Age 35 41...
The table below gives the age and bone density for five randomly selected women. Using this...
The table below gives the age and bone density for five randomly selected women. Using this data, consider the equation of the regression line, yˆ=b0+b1xy^=b0+b1x , for predicting a woman's bone density based on her age. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line to make a prediction if the correlation coefficient is not statistically significant. AGE 29...
The table below gives the age and bone density for five randomly selected women. Using this...
The table below gives the age and bone density for five randomly selected women. Using this data, consider the equation of the regression line,y^=b0+b1x, for predicting a woman's bone density based on her age. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line to make a prediction if the correlation coefficient is not statistically significant. Age   Bone Density 38  ...
The table below gives the age and bone density for five randomly selected women. Using this...
The table below gives the age and bone density for five randomly selected women. Using this data, consider the equation of the regression liney^=b0+b1x, for predicting a woman's bone density based on her age. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line to make a prediction if the correlation coefficient is not statistically significant. Age   Bone Density 36  ...
The table below gives the age and bone density for five randomly selected women. Using this...
The table below gives the age and bone density for five randomly selected women. Using this data, consider the equation of the regression line, yˆ=b0+b1xy^=b0+b1x, for predicting a woman's bone density based on her age. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line to make a prediction if the correlation coefficient is not statistically significant. Age 3939 4747...
The table below gives the age and bone density for five randomly selected women. Using this...
The table below gives the age and bone density for five randomly selected women. Using this data, consider the equation of the regression line, yˆ=b0+b1x, for predicting a woman's bone density based on her age. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line to make a prediction if the correlation coefficient is not statistically significant. Age 43 49...
The table below gives the age and bone density for five randomly selected women. Using this...
The table below gives the age and bone density for five randomly selected women. Using this data, consider the equation of the regression line, yˆ=b0+b1x, for predicting a woman's bone density based on her age. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line to make a prediction if the correlation coefficient is not statistically significant. Age 38 40...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT