Question

In: Statistics and Probability

The table below gives the age and bone density for five randomly selected women. Using this...

The table below gives the age and bone density for five randomly selected women. Using this data, consider the equation of the regression line, yˆ=b0+b1x, for predicting a woman's bone density based on her age. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line to make a prediction if the correlation coefficient is not statistically significant.

Age 38 40 46 68 69
Bone Density 352 335 328 327 322

Step 1 of 6: Find the estimated slope. Round your answer to three decimal places.

Step 2 of 6: Find the estimated y-intercept. Round your answer to three decimal places.

Step 3 of 6: Determine if the statement "Not all points predicted by the linear model fall on the same line" is true or false.

Step 4 of 6: Find the estimated value of y when x=46. Round your answer to three decimal places.

Step 5 of 6: Substitute the values you found in steps 1 and 2 into the equation for the regression line to find the estimated linear model. According to this model, if the value of the independent variable is increased by one unit, then find the change in the dependent variable yˆ.

Step 6 of 6: Find the value of the coefficient of determination. Round your answer to three decimal places.

Solutions

Expert Solution

Step 1 of 6:

From the given data, the following Table is calculated:

X Y XY X2 Y2
38 352 13376 1444 123904
40 335 13400 1600 112225
46 328 15088 2116 107584
68 327 22236 4624 106929
69 322 22218 4761 103684
Total = 261 1664 86318 14545 554326

The estimated slope is given by:

Step 2 of 6:

Estimated y - intercept is given by:

Step 3 of 6:

Correct option:

True

Explanation:

The linear model is given by:

For x = 38, we get:

The predicted value of 341.189 is different from actual value of 352.

Step 4 of 6:

For x = 46, we get:

Step 5 of 6:

Substituting the values you found in steps 1 and 2 into the equation for the regression line, we find the estimated linear model as follows:

According to this model, if the value of the independent variable is increased by one unit, then the change in the dependent variable yˆ = - 0.589

Step 6 of 6:

Correlation Coefficient (r) is given by:

So,

the value of the coefficient of determination (R2) is given by:

R2 = (-0.765)2 = 0.585


Related Solutions

The table below gives the age and bone density for five randomly selected women. Using this...
The table below gives the age and bone density for five randomly selected women. Using this data, consider the equation of the regression line, yˆ=b0+b1x, for predicting a woman's bone density based on her age. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line to make a prediction if the correlation coefficient is not statistically significant. Age 36 51...
The table below gives the age and bone density for five randomly selected women. Using this...
The table below gives the age and bone density for five randomly selected women. Using this data, consider the equation of the regression line, yˆ=b0+b1x, for predicting a woman's bone density based on her age. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line to make a prediction if the correlation coefficient is not statistically significant. Age 36 40...
The table below gives the age and bone density for five randomly selected women. Using this...
The table below gives the age and bone density for five randomly selected women. Using this data, consider the equation of the regression line, yˆ=b0+b1x, for predicting a woman's bone density based on her age. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line to make a prediction if the correlation coefficient is not statistically significant. Age 39 59...
The table below gives the age and bone density for five randomly selected women. Using this...
The table below gives the age and bone density for five randomly selected women. Using this data, consider the equation of the regression line, yˆ=b0+b1x, for predicting a woman's bone density based on her age. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line to make a prediction if the correlation coefficient is not statistically significant. Age 35 41...
The table below gives the age and bone density for five randomly selected women. Using this...
The table below gives the age and bone density for five randomly selected women. Using this data, consider the equation of the regression line, yˆ=b0+b1xy^=b0+b1x , for predicting a woman's bone density based on her age. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line to make a prediction if the correlation coefficient is not statistically significant. AGE 29...
The table below gives the age and bone density for five randomly selected women. Using this...
The table below gives the age and bone density for five randomly selected women. Using this data, consider the equation of the regression line,y^=b0+b1x, for predicting a woman's bone density based on her age. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line to make a prediction if the correlation coefficient is not statistically significant. Age   Bone Density 38  ...
The table below gives the age and bone density for five randomly selected women. Using this...
The table below gives the age and bone density for five randomly selected women. Using this data, consider the equation of the regression liney^=b0+b1x, for predicting a woman's bone density based on her age. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line to make a prediction if the correlation coefficient is not statistically significant. Age   Bone Density 36  ...
The table below gives the age and bone density for five randomly selected women. Using this...
The table below gives the age and bone density for five randomly selected women. Using this data, consider the equation of the regression line, yˆ=b0+b1xy^=b0+b1x, for predicting a woman's bone density based on her age. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line to make a prediction if the correlation coefficient is not statistically significant. Age 3939 4747...
The table below gives the age and bone density for five randomly selected women. Using this...
The table below gives the age and bone density for five randomly selected women. Using this data, consider the equation of the regression line, yˆ=b0+b1x, for predicting a woman's bone density based on her age. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line to make a prediction if the correlation coefficient is not statistically significant. Age 43 49...
The table below gives the age and bone density for five randomly selected women. Using this...
The table below gives the age and bone density for five randomly selected women. Using this data, consider the equation of the regression line, yˆ=b0+b1x, for predicting a woman's bone density based on her age. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line to make a prediction if the correlation coefficient is not statistically significant. Age 39 59...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT