Question

In: Math

Using Baynesian estimation. 1. Let X is Poi(Ꝋ). Let Ꝋ be Γ(α, β). Show that the...

Using Baynesian estimation. 1. Let X is Poi(Ꝋ). Let Ꝋ be Γ(α, β). Show that the marginal pmf of X (the compound distribution) is k1(x) = (Γ (α + x) β^x) / (Γ(α) x! (1 + β)^(α+x ); x = 0, 1, 2, 3, …, which is a generalization of the negative binomial distribution.

Solutions

Expert Solution


Related Solutions

1. Let α < β be real numbers and N ∈ N. (a). Show that if...
1. Let α < β be real numbers and N ∈ N. (a). Show that if β − α > N then there are at least N distinct integers strictly between β and α. (b). Show that if β > α are real numbers then there is a rational number q ∈ Q such β > q > α. *********************************************************************************************** 2. Let x, y, z be real numbers.The absolute value of x is defined by |x|= x, if x ≥...
Let α, β be cuts as defined by the following: 1) α ≠ ∅ and α...
Let α, β be cuts as defined by the following: 1) α ≠ ∅ and α ≠ Q 2) if r ∈ α and s ∈ Q satisfies s < r, then s ∈ α. 3) if r ∈ α, then there exists s ∈ Q with s > r and s ∈ α. Let α + β = {r + s | r ∈ α and s ∈ β}. Show that the set of all cuts R with the...
X1,...,Xn are i.i.d Γ(α1,β),...,Γ(αn,β) respectively. Show S = X1 +···+Xn ∼ Γ(α1 +···,αn,β).
X1,...,Xn are i.i.d Γ(α1,β),...,Γ(αn,β) respectively. Show S = X1 +···+Xn ∼ Γ(α1 +···,αn,β).
1. Assume   α   is   opposite   side   a,   β   is   opposite   side   b,   and   γ   is   opposite  ...
1. Assume   α   is   opposite   side   a,   β   is   opposite   side   b,   and   γ   is   opposite   side   c.   Solve   each   triangle,   if   possible.   Round   each   answer   to   the   nearest   tenth.   a. ?=10,?=95°,?=30° b. ?=43.1°,?=184.2,?=242.8
1. Assume α is opposite side a, β is opposite side b, and γ is opposite...
1. Assume α is opposite side a, β is opposite side b, and γ is opposite side c. Solve the triangle, if possible. Round your answers to the nearest tenth. (If not possible, enter IMPOSSIBLE.) α = 36°, γ = 70°, a = 35 β = ° c = b = 2. Assume α is opposite side a, β is opposite side b, and γ is opposite side c. Solve the triangle, if possible. Round your answers to the nearest...
A = [(α −β −β), (−β α −β), (−β −β α) ] (each row is in...
A = [(α −β −β), (−β α −β), (−β −β α) ] (each row is in paranthesis) (c) Find the algebraic multiplicity and the geometric multiplicity of every eigenvalue of A. (d) Justify if the matrix A is diagonalizable.
Let α be a root of x^2 +1 ∈ Z3[x]. Show that Z3(α) = {a+bα :...
Let α be a root of x^2 +1 ∈ Z3[x]. Show that Z3(α) = {a+bα : a, b ∈ Z3} is isomorphic to Z3[x]/(x^2 + 1).
If the coordinate direction angles for F3 are α = 120°,β = 60°, γ = 45°
   If the coordinate direction angles for F3 are α = 120°,β = 60°, γ = 45°, determine the magnitude and coordinate direction angles of the resultant force acting on the eyebolt.  
For the following exercises, assume α is opposite side a,β is opposite side b, and γ ...
For the following exercises, assume α is opposite side a,β is opposite side b, and γ is opposite side c. Determine whether there is no triangle, one triangle, or two triangles. Then solve each triangle, if possible. Round each answer to the nearest tenth. 1) α=119°,a=14,b=26 2) a=7, c=9,  α= 43°
1. Homework 4 Due: 2/28 Let X1,...,Xn i.i.d. Gamma(α,β) with α > 0, β > 0...
1. Homework 4 Due: 2/28 Let X1,...,Xn i.i.d. Gamma(α,β) with α > 0, β > 0 (a) Assume both α and β are unknown, find their momthod of moment estimators: αˆMOM and βˆMOM. (b) Assume α is known and β is unknown, find the maximum likelihood estimation for β. 2.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT