In: Computer Science
The expression consists of 4 literals. To solve it using K-maps we need to convert the expression in the Canonical SOP(with each term having 4 literals) also called Min-Terms. So we expand the expression using Boolean laws and convert it to Canonical form-
y = abd + a’b’c ’+ ad + a’bcd + abc + acd’
-> y= abcd + abc'd + a'b'c'd + a'b'c'd' + abcd + abc'd + ab'cd + ab'c'd + a'bcd + abcd + abcd' + abcd' + ab'cd'
Now we remove the duplicate literals-
-> y = abcd + abc'd + a'b'c'd + a'b'c'd' + ab'cd + ab'c'd + a'bcd + abcd' + ab'cd'
We can solve this using K-maps of size 4X4.
The groups which will be formed as per the K-map numbering format given below are -
Quad 1 - (9,11,13,15) Expression - AD
Quad 2 - (10,11,14,15) Expression - AC
Pair 1 - (0,1) Expression - A'B'C'
Pair 2 - (7,15) Expression - BCD
The reduced expression will be -
y = AD + AC + A'B'C' + BCD