Question

In: Chemistry

A 0.520 g sample of a diprotic acid with a molar mass of 255.8 g/mol is...

A 0.520 g sample of a diprotic acid with a molar mass of 255.8 g/mol is dissolved in water to a total volume of 23.0 mL . The solution is then titrated with a saturated calcium hydroxide solution.

a. Assuming that the pKa values for each ionization step are sufficiently different to see two equivalence points, determine the volume of added base for the first and second equivalence points.

b. The pH after adding 23.0 mL of the base was 3.82. Find the value of pKa1.

c. The pH after adding 20.0 mL past the first equivalence point was 8.17. Find the value of pKa2.

Solutions

Expert Solution


Related Solutions

A 0.1276−g sample of a monoprotic acid (molar mass = 1.10 × 102 g/mol) was dissolved...
A 0.1276−g sample of a monoprotic acid (molar mass = 1.10 × 102 g/mol) was dissolved in 25.0 mL of water and titrated with 0.0633 M NaOH. After 10.0 mL of base had been added, the pH was determined to be 4.87. What is the Ka for the acid? Answer in scientific notation.
What mass of a weak acid with a molar mass of 100 g/mol is necessary to...
What mass of a weak acid with a molar mass of 100 g/mol is necessary to neutralize 25 ml of 0.10 M NaOH solution? What is the pH of 0.15 g of sodium acetate NaC2H3O2 in 100 ml water H2O?
When 2.65 g of an unknown weak acid (HA) with a molar mass of 85.0 g/mol...
When 2.65 g of an unknown weak acid (HA) with a molar mass of 85.0 g/mol is dissolved in 250.0 g of water, the freezing point of the resulting solution is -0.257 ∘C.
A .435 g sample of a nonvolatile, nonionizable solute with a molar mass of 67.4 g/mol...
A .435 g sample of a nonvolatile, nonionizable solute with a molar mass of 67.4 g/mol is dissolved in 15.1 g of cyclohexane. Calculate the molar concentration of solute in the solution. Calculate the boiling point of the solution described. Calculate the freezing point of the solution described.
Chem Question - Gases Molar Mass N = 14.01 g/mol Molar Mass H2O = 18.016 g/mol...
Chem Question - Gases Molar Mass N = 14.01 g/mol Molar Mass H2O = 18.016 g/mol Vapor Pressure of Water at 25 C is 23.76 torr Vapor Pressure of Water at 65 C is 187.54 torr (Show all work and calculations, include units in answer. If calculations must be used in several parts, rounding should be made to 6 decimal points to ensure accuracy. Final Answers can be rounded to 3 decimal points.) A syringe filled with air can be...
A 0.5065 g solid sample containing a mixture of LaCl3 (molar mass = 245.26 g/mol) and...
A 0.5065 g solid sample containing a mixture of LaCl3 (molar mass = 245.26 g/mol) and Ce(NO3)3 (molar mass = 326.13 g/mol) was dissolved in water. The solution was titrated with KIO3, producing the precipitates La(IO3)3(s) and Ce(IO3)3(s). For the complete titration of both La3 and Ce3 , 44.81 mL of 0.1252 M KIO3 was required. Calculate the mass fraction of La and Ce in the sample.
A 0.5072 g solid sample containing a mixture of LaCl3 (molar mass = 245.26 g/mol) and...
A 0.5072 g solid sample containing a mixture of LaCl3 (molar mass = 245.26 g/mol) and Ce(NO3)3 (molar mass = 326.13 g/mol) was dissolved in water. The solution was titrated with KIO3, producing the precipitates La(IO3)3(s) and Ce(IO3)3(s). For the complete titration of both La3 and Ce3 , 44.01 mL of 0.1289 M KIO3 was required. Calculate the mass fraction of La and Ce in the sample.
A 0.5070 g solid sample containing a mixture of LaCl3 (molar mass = 245.26 g/mol) and...
A 0.5070 g solid sample containing a mixture of LaCl3 (molar mass = 245.26 g/mol) and Ce(NO3)3 (molar mass = 326.13 g/mol) was dissolved in water. The solution was titrated with KIO3, producing the precipitates La(IO3)3 and Ce(IO3)3. For the complete titration of both La3+ and Ce3+, 42.10 mL of 0.1204 M KIO3 was required. Calculate the mass fraction of La and Ce in the sample. mass fraction La: g Lag sample mass fraction Ce: g Ceg sample
An extremely small sample of an ideal diatomic gas (with a molar mass of 28 g/mol)...
An extremely small sample of an ideal diatomic gas (with a molar mass of 28 g/mol) has the following distribution of molecular speeds: 1 molecule moving at 100 m/s, 2 molecules at 200 m/s, 4 at 300 m/s, and 3 at 400 m/s. What is the rms speed of the distribution? What is the average kinetic energy of translational motion per molecule? What is the temperature of this sample?
Ethanol, C2H5OH (molar mass = 46 g/mol) is mixed with methanol, CH3OH (molar mass = 32...
Ethanol, C2H5OH (molar mass = 46 g/mol) is mixed with methanol, CH3OH (molar mass = 32 g/mol) to make an ideal solution at a given temperature. If 5.00 g of ethanol and methanol are mixed, what is the resulting vapor pressure of the solution? (the vapor pressure at the same temperature for pure ethanol is 44.5 mm Hg and pure methanol is 88.7 mm Hg)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT