In: Math
Loss,x1,x2 372,45,162 206,55,233 175,61,232 154,66,231 136,71,231 112,71,237 55,81,224 45,86,219 221,53,203 166,60,189 164,64,210 113,68,210 82,79,196 32,81,180 228,56,200 196,68,173 128,75,188 97,83,161 64,88,119 249,59,161 219,71,151 186,80,165 155,82,151 114,89,128 341,51,161 340,59,146 283,65,148 267,74,144 215,81,134 148,86,127
I am asking the R studio Code, pleas leave your code and comment here, thanks a lot!
Q1.The data file abrasion contains the results from a small scale study (Davies, O.L. and Goldsmith, P.L. Statistical methods in Research and Production, 1972), of the relation between rubber's resistance to abrasion (Y) and rubber hardness (X1) and rubber tensile strength (X2).
The data set abrasion is in Course Content -> Data Sets AL -> Ch04
Upload the results here (one file in .png or .pdf formats) - Remember to include a title.
Q2.
Run the regression model. Obtain the estimates of the coefficients (round answer to 4 decimal places, it the answer is 7.5e-08 enter 0)
Coefficient | estimate | se | p-value |
b0 | __ | __ | __ |
b1 | __ | __ | __ |
b2 | __ | __ | __ |
Which variable is significant? __ (enter exactly on of the three options: x1, x2 or both)
Q3.
Enter here the coefficient of determination (adjusted R-squared). Round your answer to 4 decimal places.
Q4.
Enter here the estimate for σ, that is s or the residual standard error. Round your answer to 2 decimal places.
Q5.
Use your model to obtain the mean abrasion loss for rubber with hardness 71 an tensile strength 201. Round your answer to 2 decimal places.
Q6.
Use your model to obtain a 98% confidence interval for the mean abrasion loss for rubber with hardness 71 an tensile strength 201.
Enter here the Lower Bound for the confidence interval. Round your answer to 2 decimal places.
Q7.
After the scatter plots, the correlation between the variables, the summary of the model, R-squared and s, and the F-test, briefly comment on the adequacy of the model fit.
code
datar<-"Loss,x1,x2
372,45,162
206,55,233
175,61,232
154,66,231
136,71,231
112,71,237
55,81,224
45,86,219
221,53,203
166,60,189
164,64,210
113,68,210
82,79,196
32,81,180
228,56,200
196,68,173
128,75,188
97,83,161
64,88,119
249,59,161
219,71,151
186,80,165
155,82,151
114,89,128
341,51,161
340,59,146
283,65,148
267,74,144
215,81,134
148,86,127"
data <-read.table(textConnection(object=datar),
header=TRUE,
sep=",",
stringsAsFactors = FALSE)
stringsAsFactors = FALSE)
pairs(data)
cor(data)
> cor(data) Loss x1 x2 Loss 1.0000000 -0.7377107 -0.2983939 x1 -0.7377107 1.0000000 -0.2992345 x2 -0.2983939 -0.2992345 1.0000000
2)
model = lm (Loss ~ . , data = data )
summary(model)
Call: lm(formula = Loss ~ ., data = data) Residuals: Min 1Q Median 3Q Max -79.385 -14.608 3.816 19.755 65.981 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 885.1611 61.7516 14.334 3.84e-14 *** x1 -6.5708 0.5832 -11.267 1.03e-11 *** x2 -1.3743 0.1943 -7.073 1.32e-07 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 36.49 on 27 degrees of freedom Multiple R-squared: 0.8402, Adjusted R-squared: 0.8284 F-statistic: 71 on 2 and 27 DF, p-value: 1.767e-11
both are significant as their p-value < alpha
Q3
adjusted R^2 = 0.8284
Q4
Residual standard error: 36.49
Please rate
Please post rest parts again