In: Math
Solution :
Given that ,
mean = 
 = $15015
standard deviation = 
 = $3540
a.
P(x > $18000) = 1 - P(x < 18000)
= 1 - P[(x - 
) / 
 < (18000 - 15015) / 3540)
= 1 - P(z < 0.84)
= 1 - 0.7995
= 0.2005
Probability = 0.2005
b.
P(x < $10000) = P[(x - 
) / 
 < (10000 - 15015) / 3540]
= P(z < -1.42)
= 0.0778
Probability = 0.0778
c.
P($12000 < x < $18000) = P[(12000 - 15015)/ 3540) < (x
- 
) /
  <
(18000 - 15015) / 3540) ]
= P(-0.85 < z < 0.84)
= P(z < 0.84) - P(z < -0.85)
= 0.7995 - 0.1977
= 0.6018
Probability = 0.6018
d.
P(x 
 $14000)
= P[(x - 
) / 
(14000 - 15015) / 3540]
= P(z 
 -0.29)
= 0.3859
Probability = 0.3859