Question

In: Math

laplace y"-y=x

laplace y"-y=x

Solutions

Expert Solution


Related Solutions

Solve the system by Laplace Transform: x'=x-2y y'=5x-y x(0)=-1, y(0)=2
Solve the system by Laplace Transform: x'=x-2y y'=5x-y x(0)=-1, y(0)=2
y′ -xe^x = 0 , y(0) = 4 using laplace transforms
y′ -xe^x = 0 , y(0) = 4 using laplace transforms
Use Laplace transforms to solve the initial value problem: x' = 2x + y, y' =...
Use Laplace transforms to solve the initial value problem: x' = 2x + y, y' = 6x + 3y; x(0) = 1, y(0) = -2
Solve the IVP using Laplace transforms x' + y'=e^t -x''+3x' +y =0 x(0)=0, x'(0)=1, y(0)=0
Solve the IVP using Laplace transforms x' + y'=e^t -x''+3x' +y =0 x(0)=0, x'(0)=1, y(0)=0
a. tan ^ -1(y/x) Show that the function u(x,y)define classical solution to the 2-dimentional Laplace equation...
a. tan ^ -1(y/x) Show that the function u(x,y)define classical solution to the 2-dimentional Laplace equation Uxx+Uyy =0 b. e ^ -(x-2t)^2 Show that the function u(t,x) is a  solution to wave equation
Solve using Laplace and Inverse Laplace Transforms. Y’’’-y’’-4y’+4y=0 y(0)=1 y’(0)=9 y’’(0)=1
Solve using Laplace and Inverse Laplace Transforms. Y’’’-y’’-4y’+4y=0 y(0)=1 y’(0)=9 y’’(0)=1
AND( OR(OR(X,Y), AND(OR(X,Y), OR(NOT(X), NOT(Y)))), OR(OR(X,Y), AND(OR(X,Y), NAND(X,Y))) ) is equivalent to: A. OR(X,Y) B. AND(X,Y)...
AND( OR(OR(X,Y), AND(OR(X,Y), OR(NOT(X), NOT(Y)))), OR(OR(X,Y), AND(OR(X,Y), NAND(X,Y))) ) is equivalent to: A. OR(X,Y) B. AND(X,Y) C. NOR(X,Y) D. XOR(X,Y) E. NAND(X,Y) F. XNOR(X,Y) How do I simplify this with the Idempotence, De morgan, absorbtion law, etc and waht are the steps to break it down?
Laplace Transform : y ' - y = e^-3t cos3t , y(0) =3 and, Show that,...
Laplace Transform : y ' - y = e^-3t cos3t , y(0) =3 and, Show that, Differential Form ? dU = Tds - Pdv , dH=Tds-Vdp , dF= -sdT-Pdv , dG= -sdT+VdP
Use the Laplace transform to solve the following initial value problem: x′=12x+3y y′=−9x+e^(3t) x(0)=0, y(0)=0 Let...
Use the Laplace transform to solve the following initial value problem: x′=12x+3y y′=−9x+e^(3t) x(0)=0, y(0)=0 Let X(s)=L{x(t)}, and Y(s)=L{y(t)}. Find the expressions you obtain by taking the Laplace transform of both differential equations and solving for Y(s) and X(s): X(s)= Y(s)= Find the partial fraction decomposition of X(s)X(s) and Y(s)Y(s) and their inverse Laplace transforms to find the solution of the system of DEs: x(t) y(t)
Laplace Question : y''-3y'+2y=4cos2t,y(0)=-2,y'(0)=0
Laplace Question : y''-3y'+2y=4cos2t,y(0)=-2,y'(0)=0
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT