In: Chemistry
The next 11 questions are related to the titration of 20.00 mL
of a 0.0950 M acetic acid solution with 0.0700 M KOH. Assume that
the temperature is 25 oC.
What is the initial pH of the analyte solution?
What is the pH when 17.00 mL of the KOH solution have been added?
What is the pH when 33.00 mL of the KOH solution have been added?
1)when 0.0 mL of KOH is added
CH3COOH dissociates as:
CH3COOH -----> H+ + CH3COO-
9.5*10^-2 0 0
9.5*10^-2-x x x
Ka = [H+][CH3COO-]/[CH3COOH]
Ka = x*x/(c-x)
Assuming x can be ignored as compared to c
So, above expression becomes
Ka = x*x/(c)
so, x = sqrt (Ka*c)
x = sqrt ((1.8*10^-5)*9.5*10^-2) = 1.308*10^-3
since x is comparable c, our assumption is not correct
we need to solve this using Quadratic equation
Ka = x*x/(c-x)
1.8*10^-5 = x^2/(9.5*10^-2-x)
1.71*10^-6 - 1.8*10^-5 *x = x^2
x^2 + 1.8*10^-5 *x-1.71*10^-6 = 0
This is quadratic equation (ax^2+bx+c=0)
a = 1
b = 1.8*10^-5
c = -1.71*10^-6
Roots can be found by
x = {-b + sqrt(b^2-4*a*c)}/2a
x = {-b - sqrt(b^2-4*a*c)}/2a
b^2-4*a*c = 6.84*10^-6
roots are :
x = 1.299*10^-3 and x = -1.317*10^-3
since x can't be negative, the possible value of x is
x = 1.299*10^-3
use:
pH = -log [H+]
= -log (1.299*10^-3)
= 2.8865
Answer: 2.89
2)when 17.0 mL of KOH is added
Given:
M(CH3COOH) = 0.095 M
V(CH3COOH) = 20 mL
M(KOH) = 0.07 M
V(KOH) = 17 mL
mol(CH3COOH) = M(CH3COOH) * V(CH3COOH)
mol(CH3COOH) = 0.095 M * 20 mL = 1.9 mmol
mol(KOH) = M(KOH) * V(KOH)
mol(KOH) = 0.07 M * 17 mL = 1.19 mmol
We have:
mol(CH3COOH) = 1.9 mmol
mol(KOH) = 1.19 mmol
1.19 mmol of both will react
excess CH3COOH remaining = 0.71 mmol
Volume of Solution = 20 + 17 = 37 mL
[CH3COOH] = 0.71 mmol/37 mL = 0.0192M
[CH3COO-] = 1.19/37 = 0.0322M
They form acidic buffer
acid is CH3COOH
conjugate base is CH3COO-
Ka = 1.8*10^-5
pKa = - log (Ka)
= - log(1.8*10^-5)
= 4.745
use:
pH = pKa + log {[conjugate base]/[acid]}
= 4.745+ log {3.216*10^-2/1.919*10^-2}
= 4.969
Answer: 4.97
3)when 33.0 mL of KOH is added
Given:
M(CH3COOH) = 0.095 M
V(CH3COOH) = 20 mL
M(KOH) = 0.07 M
V(KOH) = 33 mL
mol(CH3COOH) = M(CH3COOH) * V(CH3COOH)
mol(CH3COOH) = 0.095 M * 20 mL = 1.9 mmol
mol(KOH) = M(KOH) * V(KOH)
mol(KOH) = 0.07 M * 33 mL = 2.31 mmol
We have:
mol(CH3COOH) = 1.9 mmol
mol(KOH) = 2.31 mmol
1.9 mmol of both will react
excess KOH remaining = 0.41 mmol
Volume of Solution = 20 + 33 = 53 mL
[OH-] = 0.41 mmol/53 mL = 0.0077 M
use:
pOH = -log [OH-]
= -log (7.736*10^-3)
= 2.1115
use:
PH = 14 - pOH
= 14 - 2.1115
= 11.8885
Answer: 11.89