In: Chemistry
A 35.0 mL sample of 0.150 M ammonia (NH3, Kb=1.8×10−5) is titrated with 0.150 M HNO3. Calculate the pH after the addition of each of the following volumes of acid. Express your answer using two decimal places.
A. 0.0 mL
B. 17.5 mL
C. 35.0 mL
D. 80.0 mL
1)when 0.0 mL of HNO3 is added
NH3 dissociates as:
NH3 +H2O -----> NH4+ + OH-
0.15 0 0
0.15-x x x
Kb = [NH4+][OH-]/[NH3]
Kb = x*x/(c-x)
Assuming x can be ignored as compared to c
So, above expression becomes
Kb = x*x/(c)
so, x = sqrt (Kb*c)
x = sqrt ((1.8*10^-5)*0.15) = 1.643*10^-3
since x is comparable c, our assumption is not correct
we need to solve this using Quadratic equation
Kb = x*x/(c-x)
1.8*10^-5 = x^2/(0.15-x)
2.7*10^-6 - 1.8*10^-5 *x = x^2
x^2 + 1.8*10^-5 *x-2.7*10^-6 = 0
This is quadratic equation (ax^2+bx+c=0)
a = 1
b = 1.8*10^-5
c = -2.7*10^-6
Roots can be found by
x = {-b + sqrt(b^2-4*a*c)}/2a
x = {-b - sqrt(b^2-4*a*c)}/2a
b^2-4*a*c = 1.08*10^-5
roots are :
x = 1.634*10^-3 and x = -1.652*10^-3
since x can't be negative, the possible value of x is
x = 1.634*10^-3
So, [OH-] = x = 1.634*10^-3 M
use:
pOH = -log [OH-]
= -log (1.634*10^-3)
= 2.7867
use:
PH = 14 - pOH
= 14 - 2.7867
= 11.2133
2)when 17.5 mL of HNO3 is added
Given:
M(HNO3) = 0.15 M
V(HNO3) = 17.5 mL
M(NH3) = 0.15 M
V(NH3) = 35 mL
mol(HNO3) = M(HNO3) * V(HNO3)
mol(HNO3) = 0.15 M * 17.5 mL = 2.625 mmol
mol(NH3) = M(NH3) * V(NH3)
mol(NH3) = 0.15 M * 35 mL = 5.25 mmol
We have:
mol(HNO3) = 2.625 mmol
mol(NH3) = 5.25 mmol
2.625 mmol of both will react
excess NH3 remaining = 2.625 mmol
Volume of Solution = 17.5 + 35 = 52.5 mL
[NH3] = 2.625 mmol/52.5 mL = 0.05 M
[NH4+] = 2.625 mmol/52.5 mL = 0.05 M
They form basic buffer
base is NH3
conjugate acid is NH4+
Kb = 1.8*10^-5
pKb = - log (Kb)
= - log(1.8*10^-5)
= 4.745
use:
pOH = pKb + log {[conjugate acid]/[base]}
= 4.745+ log {5*10^-2/5*10^-2}
= 4.745
use:
PH = 14 - pOH
= 14 - 4.7447
= 9.2553
3)when 35.0 mL of HNO3 is added
Given:
M(HNO3) = 0.15 M
V(HNO3) = 35 mL
M(NH3) = 0.15 M
V(NH3) = 35 mL
mol(HNO3) = M(HNO3) * V(HNO3)
mol(HNO3) = 0.15 M * 35 mL = 5.25 mmol
mol(NH3) = M(NH3) * V(NH3)
mol(NH3) = 0.15 M * 35 mL = 5.25 mmol
We have:
mol(HNO3) = 5.25 mmol
mol(NH3) = 5.25 mmol
5.25 mmol of both will react to form NH4+ and H2O
NH4+ here is strong acid
NH4+ formed = 5.25 mmol
Volume of Solution = 35 + 35 = 70 mL
Ka of NH4+ = Kw/Kb = 1.0E-14/1.8E-5 = 5.556*10^-10
concentration ofNH4+,c = 5.25 mmol/70 mL = 0.075 M
NH4+ + H2O -----> NH3 + H+
7.5*10^-2 0 0
7.5*10^-2-x x x
Ka = [H+][NH3]/[NH4+]
Ka = x*x/(c-x)
Assuming x can be ignored as compared to c
So, above expression becomes
Ka = x*x/(c)
so, x = sqrt (Ka*c)
x = sqrt ((5.556*10^-10)*7.5*10^-2) = 6.455*10^-6
since c is much greater than x, our assumption is correct
so, x = 6.455*10^-6 M
[H+] = x = 6.455*10^-6 M
use:
pH = -log [H+]
= -log (6.455*10^-6)
= 5.1901
4)when 80.0 mL of HNO3 is added
Given:
M(HNO3) = 0.15 M
V(HNO3) = 80 mL
M(NH3) = 0.15 M
V(NH3) = 35 mL
mol(HNO3) = M(HNO3) * V(HNO3)
mol(HNO3) = 0.15 M * 80 mL = 12 mmol
mol(NH3) = M(NH3) * V(NH3)
mol(NH3) = 0.15 M * 35 mL = 5.25 mmol
We have:
mol(HNO3) = 12 mmol
mol(NH3) = 5.25 mmol
5.25 mmol of both will react
excess HNO3 remaining = 6.75 mmol
Volume of Solution = 80 + 35 = 115 mL
[H+] = 6.75 mmol/115 mL = 0.0587 M
use:
pH = -log [H+]
= -log (5.87*10^-2)
= 1.2314