Question

In: Chemistry

Part A A 75.0-mL volume of 0.200 M NH3 (Kb=1.8×10−5) is titrated with 0.500 M HNO3....

Part A

A 75.0-mL volume of 0.200 M NH3 (Kb=1.8×10−5) is titrated with 0.500 M HNO3. Calculate the pH after the addition of 25.0 mL of HNO3.

Part B

A 52.0-mL volume of 0.35 M CH3COOH (Ka=1.8×10−5) is titrated with 0.40 M NaOH. Calculate the pH after the addition of 21.0 mL of NaOH.

Solutions

Expert Solution

(A) Initial moles of NH3 = 75/1000 X 0.200 = 0.015 mol

Moles of HNO3 added = 25/1000 X 0.500 =0.0125 mol

NH3 + HNO3 --------> NH4+ +NO3-

Moles of NH3 left =0.015 - 0.0125 = 0.0025 mol

Moles of NH4+ =0.0025 mol

Ka(NH4+) = Kw / Kb(NH3)

=10-14 / (1.8 X 10-5) = 5.556 X 10-10

Henderson- Hasselbalch equation;

pH = pKa + log ([NH3] / [NH4+])

= - log Ka + log(moles of NH3 / molesof NH4+) since volume is the same for both

= - log( 5.556 X 10-10) + log(0.0025 / 0.0125)

pH = 8.56

(B)

(A) Initial moles of NH3 = 52/1000 X 0.35 = 0.0182 mol

Moles of HNO3 added = 21/1000 X 0.400 =0.0084 mol

CH3COOH + NaOH --------> CH3COO- + Na+

Moles of CH3COOH left =0.0182 - 0.0084 = 0.0098 mol

Moles of CH3COO- =0.0084 mol

Henderson- Hasselbalch equation;

pH = pKa + log ([CH3COO-] / [CH3COOH])

= - log Ka + log(moles of CH3COO- / molesof CH3COOH) since volume is the same for both

= - log( 1.8 X 10-5) + log(0.0084 / 0.0098)

pH = 4.678

hope you like it

Give thumbs up if you like it


Related Solutions

Part C A 75.0-mL volume of 0.200 M NH3 (Kb=1.8×10−5) is titrated with 0.500 M HNO3....
Part C A 75.0-mL volume of 0.200 M NH3 (Kb=1.8×10−5) is titrated with 0.500 M HNO3. Calculate the pH after the addition of 23.0 mL of HNO3. Part D A 52.0-mL volume of 0.35 M CH3COOH (Ka=1.8×10−5) is titrated with 0.40 MNaOH. Calculate the pH after the addition of 17.0 mL of NaOH. please show work
Part A: A 75.0-mL volume of 0.200 M NH3 (Kb=1.8×10−5 ) is titrated with 0.500 M...
Part A: A 75.0-mL volume of 0.200 M NH3 (Kb=1.8×10−5 ) is titrated with 0.500 M HNO3 . Calculate the pH after the addition of 28.0 mL of HNO3 . Part B: A 52.0-mL volume of 0.35 M CH3COOH (Ka=1.8×10−5 ) is titrated with 0.40 M NaOH . Calculate the pH after the addition of 33.0 mL of NaOH . Please Explain Steps
1) A 75.0-mL volume of 0.200 M NH3 (Kb=1.8×10−5) is titrated with 0.500 M HNO3. Calculate...
1) A 75.0-mL volume of 0.200 M NH3 (Kb=1.8×10−5) is titrated with 0.500 M HNO3. Calculate the pH after the addition of 23.0 mL of HNO3. 2)A 52.0-mL volume of 0.35 M CH3COOH (Ka=1.8×10−5) is titrated with 0.40 M NaOH. Calculate the pH after the addition of 21.0 mL of NaOH.
Part C A 75.0-mL volume of 0.200 mol L−1 NH3 (Kb=1.8×10−5Kb=1.8×10−5) is titrated with 0.500 mol...
Part C A 75.0-mL volume of 0.200 mol L−1 NH3 (Kb=1.8×10−5Kb=1.8×10−5) is titrated with 0.500 mol L−1 HNO3. Calculate the pH after the addition of 28.0 mL of HNO3. Express your answer numerically. Part D A 52.0 mL volume of 0.350 mol L−1 CH3COOH (Ka=1.8×10−5Ka=1.8×10−5) is titrated with 0.400 mol L−1 NaOH. Calculate the pH after the addition of 15.0 mL of NaOH. Express your answer numerically.
A. A 75.0-mLmL volume of 0.200 MM NH3NH3 (Kb=1.8×10−5Kb=1.8×10−5) is titrated with 0.500 MM HNO3HNO3. Calculate...
A. A 75.0-mLmL volume of 0.200 MM NH3NH3 (Kb=1.8×10−5Kb=1.8×10−5) is titrated with 0.500 MM HNO3HNO3. Calculate the pHpH after the addition of 11.0 mLmL of HNO3HNO3. B. A 50.0-mLmL volume of 0.15 MM HBrHBr is titrated with 0.25 MM KOHKOH. Calculate the pHpH after the addition of 15.0 mLmL of KOHKOH. C. A 52.0-mLmL volume of 0.35 MM CH3COOHCH3COOH (Ka=1.8×10−5Ka=1.8×10−5) is titrated with 0.40 MM NaOHNaOH. Calculate the pHpH after the addition of 17.0 mLmL of NaOHNaOH.
A 35.0 mL sample of 0.150 M ammonia (NH3, Kb=1.8×10−5) is titrated with 0.150 M HNO3....
A 35.0 mL sample of 0.150 M ammonia (NH3, Kb=1.8×10−5) is titrated with 0.150 M HNO3. Calculate the pH after the addition of each of the following volumes of acid. Express your answer using two decimal places. A. 0.0 mL B. 17.5 mL C. 35.0 mL D. 80.0 mL
Part C Consider the titration of 50.0 mL of 0.20 M NH3 (Kb=1.8×10−5) with 0.20 M...
Part C Consider the titration of 50.0 mL of 0.20 M NH3 (Kb=1.8×10−5) with 0.20 M HNO3. Calculate the pH after addition of 50.0 mL of the titrant at 25 ∘C. Part D A 30.0-mL volume of 0.50 M CH3COOH (Ka=1.8×10−5) was titrated with 0.50 M NaOH. Calculate the pH after addition of 30.0 mL of NaOH at 25 ∘C.
1. A 100.0 mL sample of 0.10 M NH3 is titrated with 0.10 M HNO3. Kb,...
1. A 100.0 mL sample of 0.10 M NH3 is titrated with 0.10 M HNO3. Kb, NH3 = 1.8 × 10−5. Determine the pH of the solution at each of the following points in the titration: (a) before addition of any HNO3 (b) after the addition of 50.0 mL HNO3 (c) after the addition of 75.0 mL HNO3 (d) at the equivalence point (e) after the addition of 150.0 mL HNO3 2. (12 points) Consider the titration of 37.0 mL...
Take 12.5 mL of 0.200 moles of aqueous Ammonia (NH3), whose Kb = 1.8 x 10-5,...
Take 12.5 mL of 0.200 moles of aqueous Ammonia (NH3), whose Kb = 1.8 x 10-5, and Titrate with 0.100 mol HCl, calculate PH at 5 mL HCl, 10 mL , 15 mL, 20 mL, 24.5mL, 25mL, 25.5mL, 30mL 40.0 mL, abd 50 mL HCl. Graph the solution with hoizontal axis being the PH up to 14 and The y-axis being mL HCl.
Consider the titration of 60.0 mL of 0.100 M NH3 Kb= 1.8 x 10^-5 with 0.150...
Consider the titration of 60.0 mL of 0.100 M NH3 Kb= 1.8 x 10^-5 with 0.150 M HCl. Calculate the pH after the following volumes of titrant have been added: 40.5 mL & 60.0 mL
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT