In: Accounting
The Maverick company uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor hours. the company based its predetermined overhead rate for the current year on the following data.
Estimated total direct labor hours : $2,800
Estimated total fixed MOH cost : $35,000
Estimated variable MOH per direct labor hour : $2.34
Recently, Job D3 was completed with the following characteristics :
# of units in the job : 14
total direct labor hours: 200
direct material cost : $16,500
direct labor cost : $36,000
using the above info, calculate the following ( do not round answers)
1- estimated total MOH ?
2- predetermined overhead rate ?
3- applied manufacturing overhead for job D3
4- total job D3 cost ?
5- job D3 product cost ?
Answer 1.
Estimated direct labor hours = 2,800
Estimated Fixed MOH cost = $35,000
Estimated Variable MOH per direct labor hour = $2.34
Estimated Total MOH = Estimated direct labor hours* Estimated
Variable MOH per direct labor hour + Estimated Fixed MOH cost
Estimated Total MOH = $35,000 + $2.34 * 2,800
Estimated Total MOH = $41,552
Answer 2.
Estimated Total MOH = $41,552
Estimated direct labor hours = 2,800
Predetermined Overhead Rate = Estimated Total MOH / Estimated
direct labor hours
Predetermined Overhead Rate = $41,552 / 2,800
Predetermined Overhead Rate = $14.84 per direct labor hour
Answer 3.
Job D3:
Predetermined Overhead Rate = $14.84 per direct labor hour
Number of direct labor hours = 200
Applied Manufacturing Overhead = Predetermined Overhead Rate *
Number of direct labor hours
Applied Manufacturing Overhead = $14.84 * 200
Applied Manufacturing Overhead = $2,968
Answer 4.
Job D3:
Applied Manufacturing Overhead = $2,968
Direct Material Cost = $16,500
Direct Labor Cost = $36,000
Total Cost = Direct Material Cost + Direct Labor Cost + Applied
Manufacturing Overhead
Total Cost = $16,500 + $36,000 + $2,968
Total Cost = $55,468
Answer 5.
Total Cost = $55,468
Number of units = 14
Product Cost = Total Cost / Number of units
Product Cost = $55,468 / 14
Product Cost = $3,962