In: Math
Use Excel to Answer.
A random sample of six cars from a particular model year had the fuel consumption figures, measure in miles per gallon, shown below.
(ii) Calculate the same interval using CONFIDENCE.T. (Show work in space provided.)
(iii) Calculate the same interval using T.INV.2T.
(Note: when calculating the lower and upper bounds of the interval, do not use a rounded mean that you’ve calculated with AVERAGE. Use the unrounded mean. Round only the final answers, which are the lower and upper bounds of the interval. Also, make sure to use STDEV.S to calculate the sample standard deviation.)
Data:
28.6
18.4
19.2
25.8
19.4
20.5
ANS.
Obs. | X |
1 | 28.6 |
2 | 18.4 |
3 | 19.2 |
4 | 25.8 |
5 | 19.4 |
6 | 20.5 |
SUM = | 131.9 |
MEAN = | 21.98333 |
STD. DEV.= | 4.190664 |
alpha=0.10, size=6
We find mean and sample standard deviation using Excel formula
For mean:
=AVERAGE(B2:B6) and then press ENTER , Excel returns value =
21.98333 |
For sample standard deviation:
=STDEV.S(B2:B6) and then press ENTER , Excel returns value =
4.190664 |
(i) Confidence Interval using CONFIDENCE.T:
=CONFIDENCE.T(alpha,standard_dev,size)
=CONFIDENCE.T(0.1,4.190664,6) and then press ENTER , Excel returns value =
3.4474082 |
Then we can find Confidence interval using formula =AVERAGE(B2:B6) +/-CONFIDENCE.T(0.1,4.190664,6)
Lower Bound =AVERAGE(B2:B6) - CONFIDENCE.T(0.1,4.190664,6) ,excel returns value =
18.53593 |
Upper Bound =AVERAGE(B2:B6) + CONFIDENCE.T(0.1,4.190664,6) ,excel returns value =
25.43074 |
90% Confidence Interval using EXCEL function CONFIDENCE.T
Lower Bound = | 18.54 |
Upper Bound = | 25.43 |
(ii) Confidence Interval using T.INV.2T EXCEL function:
Probability = 0.10 , Degree of freedom = size-1 = 6-1 = 5
First we find critical t-value using T.INV.2T:
=T.INV.2T(probability,deg_freedom)
=T.INV.2T(0.1,5) and then press ENTER , Excel returns value =
2.0150484 |
then, we find margin of error using formula in excel
=(T.INV.2T(probability,deg_freedom) *STDEV.S(B2:B6))/SQRT(size)
=(T.INV.2T(0.1,5)*4.190664)/SQRT(6)) and then press ENTER , Excel returns value =
3.4474082 |
again,
Then we can find Confidence interval using formula =AVERAGE(B2:B6) +/-(T.INV.2T(0.1,5)*4.190664)/SQRT(6))
Lower Bound =AVERAGE(B2:B6) -(T.INV.2T(0.1,5)*4.190664)/SQRT(6)) ,excel returns value =
18.53593 |
Upper Bound =AVERAGE(B2:B6) + (T.INV.2T(0.1,5)*4.190664)/SQRT(6)) ,excel returns value =
25.43074 |
90% Confidence Interval using EXCEL function T.INV.2T
Lower Bound = | 18.54 |
Upper Bound = | 25.43 |
Here, is an EXCEL snapshot:-