Question

In: Chemistry

You mix a 124.0 mL sample of a solution that is 0.0121 M in NiCl2 with...

You mix a 124.0 mL sample of a solution that is 0.0121 M in NiCl2 with a 183.5 mL sample of a solution that is 0.254 M in NH3.

Part A

After the solution reaches equilibrium, what concentration of Ni2+(aq) remains? (Formation constant is Kf=2.0×108.)

Express your answer with the appropriate units.

Solutions

Expert Solution

no of moles of NiCl2   = molarity * volume in L

                                    = 0.0121*0.124   = 0.0015moles

no of moles of NH3   = molarity * volume in L

                                   = 0.254*0.1835   = 0.0466moles

                 Ni^2+ +   4NH3 ------------>[ Ni(NH3)4]^+

   I            0.0015      0.0466                  0

   C           -0.0015   -4*0.0015             0.0015

   E            0             0.0406                  0.0015

           Kf   = [Ni(NH3)4]^+/[Ni^2+][NH3]^4

           2*10^8 = 0.0015/x*(0.0406)^4

           x           = 0.0015/2*10^8*(0.0406)^4   = 2.76*10^-6

         [Ni^2+]   =   x = 2.76*10^-6 M >>>>>answer


Related Solutions

You mix a 131.0 mL sample of a solution that is 0.0115 M in NiCl2 with...
You mix a 131.0 mL sample of a solution that is 0.0115 M in NiCl2 with a 173.5 mL sample of a solution that is 0.256 M in NH3. After the solution reaches equilibrium, what concentration of Ni2+(aq) remains? (Formation constant is Kf=2.0×108.)
You mix a 116.0 mL sample of a solution that is 0.0102 M in NiCl2 with...
You mix a 116.0 mL sample of a solution that is 0.0102 M in NiCl2 with a 165.0 mL sample of a solution that is 0.232 M in NH3. After the solution reaches equilibrium, what concentration of Ni2+(aq) remains? (Formation constant is Kf=2.0×108.)
You mix a 150.0 −mL sample of a solution that is 0.0140 M in NiCl2 with...
You mix a 150.0 −mL sample of a solution that is 0.0140 M in NiCl2 with a 175.0 −mL sample of a solution that is 0.500 M in NH3. After the solution reaches equilibrium, what concentration of Ni2+(aq) remains? The value of Kf for Ni(NH3)62+ is 2.0×108.
You mix a 120.5 mL sample of a solution that is 0.0123 M in NiCl2 with...
You mix a 120.5 mL sample of a solution that is 0.0123 M in NiCl2 with a 183.0 mL sample of a solution that is 0.270 M in NH3. After the solution reaches equilibrium, what concentration of Ni2+(aq) remains? (Formation constant is Kf=2.0×108.)
You mix a 133.0 mL sample of a solution that is 0.0100 M in NiCl2 with...
You mix a 133.0 mL sample of a solution that is 0.0100 M in NiCl2 with a 183.5 mL sample of a solution that is 0.220 M in NH3. After the solution reaches equilibrium, what concentration of Ni2+(aq) remains? (Formation constant is Kf=2.0×108.)
A. You mix a 125.5 mL sample of a solution that is 0.0111 M in NiCl2...
A. You mix a 125.5 mL sample of a solution that is 0.0111 M in NiCl2 with a 183.0 mL sample of a solution that is 0.225 M in NH3 After the solution reaches equilibrium, what concentration of Ni2+(aq) remains? (Formation constant is Kf=2.0×108.)Express your answer with the appropriate units. B. A 120.0 −mL sample of a solution that is 2.7×10−3 M in AgNO3 is mixed with a 230.0 −mL sample of a solution that is 0.10 M in NaCN....
You mix a 116.5 mL sample of a solution that is 0.0127 M in NiCl2 with...
You mix a 116.5 mL sample of a solution that is 0.0127 M in NiCl2 with a 174.5 mL sample of a solution that is 0.220 M in NH3. After the solution reaches equilibrium, what concentration of Ni2+(aq) remains? (Formation constant is Kf=2.0×108.) Express your answer with the appropriate units.
A 130.0 mL sample of a solution that is 0.0126 M in NiCl2 is mixed with...
A 130.0 mL sample of a solution that is 0.0126 M in NiCl2 is mixed with a 190.0 mL sample of a solution that is 0.400 M in NH3. -After the solution reaches equilibrium, what concentration of Ni2+(aq) remains? The value of Kf for Ni(NH3)62+ is 2.0×108.
You mix a 140.0 −mL−mL sample of a solution that is 0.0124 MM in NiCl2NiCl2 with...
You mix a 140.0 −mL−mL sample of a solution that is 0.0124 MM in NiCl2NiCl2 with a 200.0 −mL−mL sample of a solution that is 0.350 MM in NH3NH3. After the solution reaches equilibrium, what concentration of Ni2+(aq)Ni2+(aq) remains? The value of KfKf for Ni(NH3)62+Ni(NH3)62+ is 2.0×1082.0×108. Express the concentration to two significant figures and include the appropriate units.
1. Add 0.5 mL of 0.10 M NiCl2 solution to each of 7 test tubes using...
1. Add 0.5 mL of 0.10 M NiCl2 solution to each of 7 test tubes using dropper provided. Label these tubes 1 through 7. 2. Add the following to the respective tubes containing the NiCl2 solution, Tube 1: 5 drops of water (used here as a control experiment for dilution) Tube 2: 1 mL of conc. HCl Tube 3: 5 drops of conc. ammonia Tube 4: 5 drops of dilute (5% v/v) ethylenediamine solution Tube 5: 5 drops of 0.25...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT