In: Finance
Suppose we have the following projects on two stocks. Assume the correlation among the two assets returns is 0.6
State of Economy | Probability | Stock A | Stock B |
Recession | 0.2 | -2% | 6% |
Slow | 0.4 | 4 | 8 |
Average | 0.4 | 12 | 19 |
a. Find the expected return and standard deviation of shares A and B.
b. Find the investment percentage (weights) needed in A and B shares to create the minimum variance portfolio.
Part A:
Expected Ret:
Expected Ret = Sum [ Prob * ret ]
Stock A:
Scenario | Prob | Ret | Prob * Ret |
Recesion | 0.2000 | (0.0200) | (0.0040) |
Slow | 0.4000 | 0.0400 | 0.0160 |
Average | 0.4000 | 0.1200 | 0.0480 |
Expected Ret | 0.0600 |
Stock B:
Scenario | Prob | Ret | Prob * Ret |
Recesion | 0.2000 | 0.0600 | 0.0120 |
Slow | 0.4000 | 0.0800 | 0.0320 |
Average | 0.4000 | 0.1900 | 0.0760 |
Expected Ret | 0.1200 |
Strandard Deviation:
Standard deviation is a measure of amount of variation or dispersion of set of values. It spcifies the risk of set of values.
SD = SQRT [ SUm [ Prob * (X-AVgX)^2 ] ]
Stock A:
State | Prob | Ret (X) | (X-AvgX) | (X-AvgX)^2 | Prob * (X-Avg X)^2 |
Recesion | 0.2000 | (0.0200) | (0.0800) | 0.006400 | 0.00128 |
Slow | 0.4000 | 0.0400 | (0.0200) | 0.000400 | 0.00016 |
Average | 0.4000 | 0.1200 | 0.0600 | 0.003600 | 0.00144 |
Sum[ Prob * ( X-AvgX)^2 ) ] | 0.00288 | ||||
SD = SQRT [ [ Sum[ Prob * ( X-AvgX)^2 ) ] ] ] | 0.05367 |
SD is 5.37%
Stock B:
State | Prob | Ret (X) | (X-AvgX) | (X-AvgX)^2 | Prob * (X-Avg X)^2 |
Recesion | 0.2000 | 0.0600 | (0.0600) | 0.003600 | 0.00072 |
Slow | 0.4000 | 0.0800 | (0.0400) | 0.001600 | 0.00064 |
Average | 0.4000 | 0.1900 | 0.0700 | 0.004900 | 0.00196 |
Sum[ Prob * ( X-AvgX)^2 ) ] | 0.00332 | ||||
SD = SQRT [ [ Sum[ Prob * ( X-AvgX)^2 ) ] ] ] | 0.05762 |
SD is 5.76%
Minimum Variance Portfolio or Optimal Risky Portfolio:
A minimum variance portfolio is a collection of securities that
combine to minimize the price volatility of the overall portfolio.
with the given weights to securities/ Assets in portfolio,
portfolio risk will be minimal.
Weight in A = [ [ (SD of B)^2] - [ SD of A * SD of B * r(A,B) ] ] /
[ [ (SD of A)^2 ]+ [ (SD of B)^2 ] - [ 2* SD of A * SD of B * r (A,
B) ] ]
Weight in B = [ [ (SD of A)^2] - [ SD of A * SD of B * r(A,B) ] ] /
[ [ (SD of A)^2 ]+ [ (SD of B)^2 ] - [ 2* SD of A * SD of B * r (A,
B) ] ]
Particulars | Amount |
SD of A | 5.37% |
SD of B | 5.76% |
r(A,B) | 0.6000 |
Weight in A = [ [ (SD of B)^2] - [ SD of A * SD of B * r(A,B) ]
] / [ [ (SD of A)^2 ]+ [ (SD of B)^2 ] - [ 2* SD of A * SD of B * r
(A, B) ] ]
= [ [ (0.0576)^2 ] - [ 0.0537 * 0.0576 * 0.6 ] ] / [ [ (0.0537)^2 ]
+ [ ( 0.0576 )^2 ] - [ 2 * 0.0537 * 0.0576 * 0.6 ] ]
= [ [ 0.00331776 ] - [ 0.001855872 ] ] / [ [ 0.00288369 ] + [
0.00331776 ] - [ 2 * 0.001855872 ] ]
= [ 0.001461888 ] / [ 0.002489706 ]
= 0.587173
Weight in B = [ [ (SD of A)^2] - [ SD of A * SD of B * r(A,B) ]
] / [ [ (SD of A)^2 ]+ [ (SD of B)^2 ] - [ 2* SD of A * SD of B * r
(A, B) ] ]
= [ [ (0.0537)^2 ] - [ 0.0537 * 0.0576 * 0.6 ] ] / [ [ (0.0537)^2 ]
+ [ ( 0.0576 )^2 ] - [ 2 * 0.0537 * 0.0576 * 0.6 ] ]
= [ [ 0.00288369 ] - [ 0.001855872 ] ] / [ [ 0.00288369 ] + [
0.00331776 ] - [ 2 * 0.001855872 ] ]
= [ 0.001027818 ] / [ 0.002489706 ]
= 0.412827
Weight of Investment in Stock A = 58.72%
Weight of Investment in Stock A = 41.28%