In: Math
The data below are the temperatures on randomly chosen days during a summer class and the number of absences on those days. Construct a 95% prediction interval for y, the number of days absent, given x = 95 degrees and y = 0.449x - 30.27
Temperature X |
72 |
86 |
91 |
90 |
88 |
98 |
75 |
100 |
80 |
Number of absences Y |
3 |
7 |
10 |
10 |
8 |
15 |
4 |
15 |
5 |
a. (9.957, 14.813)
b. (11.378, 13.392)
c. (4.321, 6.913)
d. (3.176, 5.341)
X | Y | XY | X² | Y² |
72 | 3 | 216 | 5184 | 9 |
86 | 7 | 602 | 7396 | 49 |
91 | 10 | 910 | 8281 | 100 |
90 | 10 | 900 | 8100 | 100 |
88 | 8 | 704 | 7744 | 64 |
98 | 15 | 1470 | 9604 | 225 |
75 | 4 | 300 | 5625 | 16 |
100 | 15 | 1500 | 10000 | 225 |
80 | 5 | 400 | 6400 | 25 |
Ʃx = | Ʃy = | Ʃxy = | Ʃx² = | Ʃy² = |
780 | 77 | 7002 | 68334 | 813 |
Sample size, n = | 9 |
x̅ = Ʃx/n = | 86.6667 |
y̅ = Ʃy/n = | 8.55556 |
SSxx = Ʃx² - (Ʃx)²/n = | 734 |
SSyy = Ʃy² - (Ʃy)²/n = | 154.222 |
SSxy = Ʃxy - (Ʃx)(Ʃy)/n = | 328.667 |
Slope, b = SSxy/SSxx = 0.44777
y-intercept, a = y̅ -b* x̅ = -30.2516
Regression equation :
ŷ = -30.2516 + (0.4478) x
Predicted value of y at x =95
ŷ = -30.2516 + (0.4478) * 95 = 12.287
df = n-2 = 7
Significance level, α = 0.05
Critical value, t_c = T.INV.2T(0.05, 7) = 2.3646
Sum of Square error, SSE = SSyy -SSxy²/SSxx = 7.05359
Standard error, se = √(SSE/(n-2)) = 1.00382
95% prediction interval for y
Answer a)
Note: The answer is little different because of the rounding off of numbers.