Question

In: Advanced Math

solve for x: [x * sqrt(1+x2)] + ln[x + sqrt(1+x2)] = 25

solve for x:

[x * sqrt(1+x2)] + ln[x + sqrt(1+x2)] = 25

Solutions

Expert Solution


%%Matlab code for finding root using newton secant bisection and false
clear all
close all

%function for which root have to find
fun=@(x) x.*sqrt(1+x.^2)+log(x+sqrt(1+x.^2))-25;
fprintf('For the function f(x)=')
disp(fun)
[root]=newton_method(fun,10,1000);
fprintf('\tValue of x using Newton method is %f.\n',root)
xx=linspace(0,5);
yy=fun(xx);
plot(xx,yy)
xlabel('x')
ylabel('f(x)')
title('x vs. f(x) plot')
hold on
plot(root,fun(root),'r*')
box on; grid on
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Matlab function for Newton Method
function [root]=newton_method(fun,x0,maxit)
syms x
g1(x) =diff(fun,x);   %1st Derivative of this function
xx=x0;            %initial guess]
fprintf('\nRoot using Newton method\n')
%Loop for all intial guesses
    n=10^-15; %error limit for close itteration
    for i=1:maxit
        x2=double(xx-(fun(xx)./g1(xx))); %Newton Raphson Formula
        cc=abs(double(fun(x2)));                 %Error
        err(i)=cc;
        xx=x2;
        if cc<=n
            break
        end
        fprintf('\tAfter %d iteration root using Newton method is %f\n',i,xx)
    end
  
    root=xx;
end

%%%%%%%%%%%%%%%%% End of Code %%%%%%%%%%%%%%%%


Related Solutions

(1) z=ln(x^2+y^2), y=e^x. find ∂z/∂x and dz/dx. (2) f(x1, x2, x3) = x1^2*x2+3sqrt(x3), x1 = sqrt(x3),...
(1) z=ln(x^2+y^2), y=e^x. find ∂z/∂x and dz/dx. (2) f(x1, x2, x3) = x1^2*x2+3sqrt(x3), x1 = sqrt(x3), x2 = lnx3. find ∂f/∂x3, and df/dx3.
Find the absolute max and min in [-1,1] for f(x)=ln(x2+x+1)
Find the absolute max and min in [-1,1] for f(x)=ln(x2+x+1)
1. Differentiate the following functions A. y=ln(x+sqrt(x^2 -1)) B. y=ln(sinx) C. y=xlnx-x D. y=e^x(sinx)
1. Differentiate the following functions A. y=ln(x+sqrt(x^2 -1)) B. y=ln(sinx) C. y=xlnx-x D. y=e^x(sinx)
8) Solve x^2y’’ – 2y = ln(x)
8) Solve x^2y’’ – 2y = ln(x)
The domain of the function h(x) = ln(x + 3) + x2 − 4 is (A)...
The domain of the function h(x) = ln(x + 3) + x2 − 4 is (A) {x∈R| −3<x<−2or−2<x<0} (B) {x∈R| −3<x<−2or−2<x≤0} (C) {x∈R| −3≤x<−2or−2<x≤0} (D) {x∈R| −3<x<−2or0≤x<2} (E) {x∈R| −3<x<−2or(x≥0andx̸=2)} (F) None of (A) - (E)
The function described by f(x) = ln(x2 + 1) − e0.4x cos πx has an infinite...
The function described by f(x) = ln(x2 + 1) − e0.4x cos πx has an infinite number of zeros. (a) Determine, within 10−6, the only negative zero. please don't use any program while solving it, thanks.
The boundary of a lamina consists of the semicircles y = sqrt(1 − x2) and y...
The boundary of a lamina consists of the semicircles y = sqrt(1 − x2) and y = sqrt(9 − x2) together with the portions of the x-axis that join them. Find the center of mass of the lamina if the density at any point is inversely proportional to its distance from the origin.
sin(tan-1 x), where |x| < 1, is equal to: (a) x/√(1 – x2) (b) 1/√(1 – x2) (c) 1/√(1 + x2) (d) x/√(1 + x2)
sin(tan-1 x), where |x| < 1, is equal to:(a) x/√(1 – x²)(b) 1/√(1 – x²)(c) 1/√(1 + x²)(d) x/√(1 + x²)
use variation of parameters to solve y''+y'-2y=ln(x)
use variation of parameters to solve y''+y'-2y=ln(x)
I = ∫sqrt(4x^2+20) dx I = ∫(1)/(x^2*sqrt(x^2-a)) dx
I = ∫sqrt(4x^2+20) dx I = ∫(1)/(x^2*sqrt(x^2-a)) dx
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT