In: Accounting
A firm wishes to maintain an internal growth rate of 9.3 percent and a dividend payout ratio of 39 percent. The current profit margin is 6.4 percent, and the firm uses no external financing sources. What must total asset turnover be?
Solution: | ||||
Total asset turnover =2.18 times | ||||
Working Notes: | ||||
Retention ratio (b) = 1- payout ratio | ||||
b= 1-0.39 = 0.61 | ||||
b=61% | ||||
Internal growth rate = (ROA x b) /(1-(ROA x b)) | ||||
Retention ratio (b) =61% = 0.61 | ||||
ROA (Return on Assets)=?? | ||||
Internal growth rate=9.3%=0.093 | ||||
Internal growth rate = (ROA x b) /(1-(ROA x b)) | ||||
0.093 = (ROA x 0.61)/(1-(ROAx0.61)) | ||||
0.093 (1-(ROA x 0.61)) = ROA x 0.61 | ||||
0.093 - ROA x 0.61 x 0.093 = ROA x0.61 | ||||
0.093 = 0.61 x ROA + 0.05673 x ROA | ||||
ROA = 0.093/(0.61+0.05673) | ||||
ROA = 0.093/0.66673 | ||||
ROA = 0.13948674875 | ||||
ROA = Profit margin x Total assets turnover | ||||
0.13948674875 = 0.064 x Total assets turnover | ||||
Total assets turnover = 0.13948674875/0.064 | ||||
Total assets turnover = 2.179480449 | ||||
Total assets turnover = 2.18 times | ||||
Please feel free to ask if anything about above solution in comment section of the question. |