In: Statistics and Probability
x y
9 10
32 20
18 21
15 16
26 22
a)Develop an estimated regression equation for the data of the form ŷ = b0+b1x. Plot the standardized residuals againstŷand the normal probability plot. Do the plots support the assumptions about ε? Explain.
b)Develop an estimated regression equation for the data of the form ŷ =b0+b1x+b2x2. Plot the standardized residuals againstŷand the normal probability plot. Do the plots support the assumptions about ε? Explain.
c)Use the estimated regression equation developed in part (b) and predict the value of y when x=20.
provide answer with minitab please
a)
MTB > Regress 'Y' 1 'X';
SUBC> GFits;
SUBC> RType 1;
SUBC> Constant;
SUBC> Brief 2.
Regression Analysis: Y versus X
The regression equation is
Y = 9.32 + 0.424 X
Predictor Coef SE Coef T P
Constant 9.315 4.196 2.22 0.113
X 0.4242 0.1944 2.18 0.117
S = 3.531 R-Sq = 61.4% R-Sq(adj) = 48.5%
Analysis of Variance
Source DF SS MS F P
Regression 1 59.39 59.39 4.76 0.117
Residual Error 3 37.41 12.47
Total 4 96.80
Residuals vs Fits for Y
MTB > Regress 'Y' 1 'X';
SUBC> GFits;
SUBC> RType 1;
SUBC> Constant;
SUBC> Brief 2.
Regression Analysis: Y versus X
The regression equation is
Y = 9.32 + 0.424 X
Predictor Coef SE Coef T P
Constant 9.315 4.196 2.22 0.113
X 0.4242 0.1944 2.18 0.117
S = 3.531 R-Sq = 61.4% R-Sq(adj) = 48.5%
Analysis of Variance
Source DF SS MS F P
Regression 1 59.39 59.39 4.76 0.117
Residual Error 3 37.41 12.47
Total 4 96.80
Residuals vs Fits for Y
MTB > %NormPlot 'RESI2'.
Executing from file: C:\Program Files
(x86)\MTBWIN\MACROS\NormPlot.MAC
Macro is running ... please wait
Normal Prob Plot: RESI2
From the plot we can say that follows normal distribution.
b)
MTB > let c3=c1*c1
MTB > Regress 'Y' 2 'X' 'X2';
SUBC> GFits;
SUBC> RType 1;
SUBC> Constant;
SUBC> Brief 2.
Regression Analysis: Y versus X, X2
The regression equation is
Y = - 8.10 + 2.41 X - 0.0480 X2
Predictor Coef SE Coef T P
Constant -8.101 4.104 -1.97 0.187
X 2.4127 0.4409 5.47 0.032
X2 -0.04797 0.01050 -4.57 0.045
S = 1.279 R-Sq = 96.6% R-Sq(adj) = 93.2%
Analysis of Variance
Source DF SS MS F P
Regression 2 93.529 46.765 28.60 0.034
Residual Error 2 3.271 1.635
Total 4 96.800
Source DF Seq SS
X 1 59.394
X2 1 34.135
Residuals vs Fits for Y
MTB > Name c4 = 'RESI1'
MTB > Regress 'Y' 2 'X' 'X2';
SUBC> Residuals 'RESI1';
SUBC> GFits;
SUBC> RType 1;
SUBC> Constant;
SUBC> Brief 2.
Regression Analysis: Y versus X, X2
When x=20
MTB > let k1=-8.10+2.41*20-0.0480*(20*20)
MTB > print k1
Data Display
K1 20.9000