In: Statistics and Probability
Consider the following data for two variables, X and Y
X | 6 | 29 | 21 | 15 | 24 |
Y | 10 | 30 | 22 | 14 | 25 |
a. Develop an estimated regression equation for the data of the form y-hat = bo + b1 x. Comment on the adequacy of this equation for predicting y . Enter negative value as negative number.
The regression equation is | ||||||||||||||||||||||||
Y = [ ] + [ ] X (to 2 decimals) | ||||||||||||||||||||||||
R^2 = [ ] % ( to 1 decimal ) R-sq adj [ ] % 9 to 1 decimal ) |
||||||||||||||||||||||||
Analysis of Variance | ||||||||||||||||||||||||
|
Using a .05 significance level, the P-value indicates a [ Weak, Strong or No Relationship ] ; note that [ ] % (to 1 decimal) of the variability in y has been explained by x .
Using Minitab:
Click Stat > Regression > Regression... on the top menu, as shown below:
You will be presented with the following Regression dialogue box:
After transferring the variables, Click the OK button. The output that Minitab produces is shown below.
The regression equation is
Y = 3.08 + 0.901 X
R2 = [ 96.3 ] % (to 1 decimal ) R-sq adj = [ 95.1 ] % ( to 1 decimal) |
|
Using a .05 significance level, the P-value indicates a Strong Relationship ] ; note that [ 96.3 ] % (to 1 decimal) of the variability in y has been explained by x .