Question

In: Math

Given a normal distribution with mean population of 51 and standard devitation of 8​, and given...

Given a normal distribution with mean population of 51 and standard devitation of 8​, and given you select a sample of n=100​, complete parts​ (d).

d. There is a 30​% chance thatt X(w/bar above) is above what​ value? (Type an integer or decimal rounded to two decimal places as​ needed.)

Solutions

Expert Solution

Solution:
   We are given that: X follows a normal distribution with a mean population of 51 and a standard deviation of 8 .

That is:

n = sample size = 100

We have to find the sample mean value such that:

that is:

Then

Now find z value such that:
P( Z < z ) = 0.70

That is look for an area = 0.7000 or its closest area and find z value.

Area 0.6985 is closest to 0.7000 than 0.7019

and it corresponds to 0.5 and 0.02

Thus z = 0.52

Now use the following formula to find the sample mean value:

Thus there is a 30% chance that is above 51.42.


Related Solutions

Given a normal distribution with mean population of 51 and standard devitation of 8​, and given...
Given a normal distribution with mean population of 51 and standard devitation of 8​, and given you select a sample of n=100​, complete parts​ (c). c. What is the probability that X(w/ bar above) is above 51.6​? ​(Type an integer or decimal rounded to four decimal places as​ needed.)
A population has a normal distribution with a mean of 51.4 and a standard deviation of...
A population has a normal distribution with a mean of 51.4 and a standard deviation of 8.4. Assuming n/N is less than or equal to 0.05, the probability, rounded to four decimal places, that the sample mean of a sample size of 18 elements selected from this population will be more than 51.15 is?
A population has a normal distribution with a mean of 51.5 and a standard deviation of...
A population has a normal distribution with a mean of 51.5 and a standard deviation of 9.6. Assuming , the probability, rounded to four decimal places, that the sample mean of a sample of size 23 elements selected from this populations will be more than 51.15 is:
A population forms a normal distribution with a mean of µ = 120 and a standard...
A population forms a normal distribution with a mean of µ = 120 and a standard deviation of σ = 14. If two scores were selected from this population, how much distance would you expect, on average, between the second score and the population mean? A sample of n = 20 scores from this population has a mean of M = 90, do you think this sample is relative typical or extreme to the population? Explain.
Given a standardized a normal distribution (with a mean of 0 and a standard deviation of...
Given a standardized a normal distribution (with a mean of 0 and a standard deviation of 1, as in Table E.2), what is that probability that a. Z is less than 1.57? b. Z is greater than 1.84? c. Z is between 1.57 and 1.84? d. Z is less than 1.57 or greater than 1.84?
For a population with a normal distribution with mean 23.5 and a standard deviation 2.6​, determine...
For a population with a normal distribution with mean 23.5 and a standard deviation 2.6​, determine the following. ​ (a) About​ 68% of the population lies between what​ limits? ​ (b) About​ 95% of the population lies between what​ limits? ​(c) About​ 99.7% of the population lies between what​ limits
A population of values has a normal distribution with mean of 165.7 and standard deviation of...
A population of values has a normal distribution with mean of 165.7 and standard deviation of 60.2. a) Get the z-score for a value of 163. For this problem you use the z score formula z=x−μσz=x-μσ    b) This z-score tells you how many  the score of 163 is above or below the population mean μμ . c) Find the probability that a randomly selected value is greater than 163.   Part 2 A population of values has a normal distribution with mean...
Given a standardized normal distribution (with a mean of 0 and a standard deviation of 1),...
  Given a standardized normal distribution (with a mean of 0 and a standard deviation of 1), complete parts (a) through (d) below.     a. What is the probability that Z is between - 1.56 and 1.88?   b. What is the probability that Z is less than - 1.56 or greater than 1.88?  c. What is the value of Z if only 6.5% of all possible Z values are larger?    d. Between what two values of Z (symmetrically distributed around...
Given a standardized normal distribution (with a mean of 0 and a standard deviation of 1),...
Given a standardized normal distribution (with a mean of 0 and a standard deviation of 1), complete parts (a) through (d). a. What is the probability that Z is less than 1.53? The probability that Z is less than 1.53 is _______ (Round to four decimal places as needed.) b. What is the probability that Z is greater than 1.84? The probability that Z is greater than 1.84 is _______  (Round to four decimal places as needed.) c. What is the probability that Z...
Given a standardized normal distribution​ (with a mean of 0 and a standard deviation of​ 1),...
Given a standardized normal distribution​ (with a mean of 0 and a standard deviation of​ 1), complete parts​ (a) through (d). Show ALL Work. a. What is the probability that Z is less than 1.53​? The probability that Z is less than 1.53 is .9370 (Round to four decimal places as​ needed.) b. What is the probability that Z is greater than 1.85​? The probability that Z is greater than 1.85 is .0322 ​(Round to four decimal places as​ needed.)...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT