Question

In: Electrical Engineering

A 50Ω lossless line is to be matched to an antenna with Zload = (100+j50)Ω using...

A 50Ω lossless line is to be matched to an antenna with Zload = (100+j50)Ω using a shorted stub.

Use the Smith chart to determine the stub length and distance between the antenna and stub

Solutions

Expert Solution


Related Solutions

A lossless 60 Ω line is terminated by a (60 + j60) Ω load. (a) Find...
A lossless 60 Ω line is terminated by a (60 + j60) Ω load. (a) Find Γ and VSWR. (b) If Zin = 120 - j60 Ω, how far (in terms of wavelengths) is the load from the generator? (c) What fraction of the voltage is reflected? (d) What fraction of the current is reflected? (e) What fraction of the power is reflected?
3. A lossless 60 Ω line is terminated by a (60 + j60) Ω load. (a)...
3. A lossless 60 Ω line is terminated by a (60 + j60) Ω load. (a) Find Γ and VSWR. (b) If Zin = 120 - j60 Ω, how far (in terms of wavelengths) is the load from the generator? (c) What fraction of the voltage is reflected? (d) What fraction of the current is reflected? Solve by using smith charts
A lossless 50-Ω transmission line is terminated in a load with Z L = (35 −...
A lossless 50-Ω transmission line is terminated in a load with Z L = (35 − j47.5) Ω using a short circuited stub. Use the Smith chart to determine position and length line for the stub? show step by step by hand and draw by hand I want details so I can understand
A lossless 50-Ω transmission line is terminated in a load with Z L = (35 −...
A lossless 50-Ω transmission line is terminated in a load with Z L = (35 − j47.5) Ω using a short circuited stub. Use the Smith chart to determine position and length line for the stub? show step by step I want details so I can understand
Derive aformula for the input impedance of a terminated lossless transmission line.
Derive aformula for the input impedance of a terminated lossless transmission line.
Assuming that the length of a lossless transmission line with the normalized load impedance of zL...
Assuming that the length of a lossless transmission line with the normalized load impedance of zL = ZL/Z0 = 1 + j1 is l = 2.25λz , there are a total of (A) 2 voltage maxima and 2 voltage minima (B) 2 voltage maxima and 3 voltage minima (C) 3 voltage maxima and 2 voltage minima (D) 4 voltage maxima and 4 voltage minima (E) 4 voltage maxima and 5 voltage minima (F) 5 voltage maxima and 4 voltage minima...
(Use Smith Chart) A 50 Ω line is terminated by a 75 Ω resistor. The input...
(Use Smith Chart) A 50 Ω line is terminated by a 75 Ω resistor. The input terminals are connected to the output terminals of a 30 Ω line. Both lines are 0.12 λ long. a. Find Zin and Γin at the input of the 30 Ω line b. SWR values on both lines Use Smith Chart
12. At a frequency of 80 MHz, a lossless transmission line has a characteristic impedance of...
12. At a frequency of 80 MHz, a lossless transmission line has a characteristic impedance of 300Ω and a wavelength of 2.5m. (a) Find L; (b) Find C. (c) If the line is terminated with the parallel combination of 200Ω and 5 pF, determine Γ and SWR.
A 3-phase line has a resistance of 9 Ω/phase and a reactance of 23 Ω/phase. The...
A 3-phase line has a resistance of 9 Ω/phase and a reactance of 23 Ω/phase. The load at the receiving end is 130 MW at 0.8 p. f. lagging. Find the capacity of the synchronous condenser required to be connected at the receiving end to maintain the voltage at both ends of the transmission line at 132 KV.
Analyze the advantages and disadvantages of using a matched-subjects (matched pairs) design instead of a typical...
Analyze the advantages and disadvantages of using a matched-subjects (matched pairs) design instead of a typical between subjects design.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT