Question

In: Mechanical Engineering

A gas refrigeration cycle with a pressure ratio of 4.3 uses helium as the working fluid....

A gas refrigeration cycle with a pressure ratio of 4.3 uses helium as the working fluid. The temperature of the helium is 26°C at the compressor inlet and 50°C at the turbine inlet. Assuming isentropic efficiencies of 87 percent for both the turbine and the compressor, determine (a) the minimum temperature in the cycle, (b) the coefficient of performance, and (c) the mass flow rate of the helium for a refrigeration rate of 20 kW.

ans a)198.76 b)0.574 c)0.0564.

Can you show me the solution step by step please?

Solutions

Expert Solution


Related Solutions

A gas refrigeration cycle with a pressure ratio of 4 uses helium as the working fluid....
A gas refrigeration cycle with a pressure ratio of 4 uses helium as the working fluid. The temperature of the helium is -6°C at the compressor inlet and 50°C at the turbine inlet. Assume isentropic efficiencies of 88 percent for both the turbine and the compressor. (Given: The properties of helium are cp= 5.1926 kJ/kg·K and k = 1.667.) FIND: a. The minimum temperature of the cycle. b. The coefficient of performance. c. the mass flow rate of the helium.
a simple ideal Brayton cycle with air as the working fluid has a pressure ratio of...
a simple ideal Brayton cycle with air as the working fluid has a pressure ratio of 10. The air enters the compressor at 520 R and the turbine at 2000 R. Accounting for the variation of specific heats with temperature, determine (a) the ait temperature at the compressor exit, (b) the back work ratio, and (c) the thermal efficiency.
An ideal refrigeration cycle utilizes R-134a as a working fluid. If the fluid enters the compressor...
An ideal refrigeration cycle utilizes R-134a as a working fluid. If the fluid enters the compressor as saturated vapor at 6 C and enters a throttling valve as a saturated liquid at 1.2MPa. Assuming the mass flow rate of fluid is 1 kg/sec. 1. The heat received by the fluid (kJ) is 2. The heat received by the surroundings (kJ) is 3. The power input to the compressor (kJ) is 4. The coefficient of performance is
Consider a simple ideal Rankine cycle which uses water as the working fluid. The boiler pressure...
Consider a simple ideal Rankine cycle which uses water as the working fluid. The boiler pressure is 6100 kPa and the condenser pressure is 30 kPa. At the turbine inlet, steam is at 480°C. The isentropic efficiency of the turbine is 92 percent. The pump losses are negligible and the water leaving the condenser is subcooled by 6.3°C. The boiler is sized for a mass flow rate of 20 kg/s. Determine the following values. The temperature at the pump inlet....
A vapor-compression refrigeration cycle operates at steady state with Refrigerant 134a as the working fluid. Saturated...
A vapor-compression refrigeration cycle operates at steady state with Refrigerant 134a as the working fluid. Saturated vapor enters the compressor at 2 bar, and saturated liquid exits the condenser at 10 bar. The isentropic compressor efficiency is 80%. The mass flow rate of refrigerant is 7 kg/min. Determine: (a) the compressor power, in kW. (b) the refrigeration capacity, in tons. (c) the coefficient of performance.
A simple ideal Rankine cycle with water as the working fluid operates between the pressure limits...
A simple ideal Rankine cycle with water as the working fluid operates between the pressure limits of 4 MPa in the boiler and 5 kPa in the condenser and a turbine inlet temperature of 700°C. The boiler is sized to provide a steam flow of 50 kg/s. Determine the power produced by the turbine and consumed by the pump. Use steam tables. Find the values of power produced by the turbine and consumed by the pump in kW
An ideal Rankine Cycle with reheat uses water as the working fluid with a flow rate...
An ideal Rankine Cycle with reheat uses water as the working fluid with a flow rate of 0.15 kg/s. At the inlet of the turbine (state 1) the water is a superheated vapor at 475ºC and 11 MPa. The pressure at the exit of the first stage of the turbine is 0.9 MPa. The reheat temperature (state 3) is also  475ºC.   The condenser pressure is 8 kPa, and the water exits as a saturated liquid Find: (a) The heat addition to...
An ideal Rankine Cycle with reheat uses water as the working fluid with a flow rate...
An ideal Rankine Cycle with reheat uses water as the working fluid with a flow rate of 0.15 kg/s. At the inlet of the turbine (state 1) the water is a superheated vapor at 475ºC and 11 MPa. The pressure at the exit of the first stage of the turbine is 0.9 MPa. The reheat temperature (state 3) is also  475ºC.   The condenser pressure is 8 kPa, and the water exits as a saturated liquid Find: (a) The heat addition to...
An ideal Otto cycle uses air as the working fluid; its state at the beginning of...
An ideal Otto cycle uses air as the working fluid; its state at the beginning of the compression is 120 psia and 60°F, its temperature at the end of the combustion is 1500°F, and its compression ratio is 9. Use constant specific heats at room temperature. Determine the rate of heat addition and rejection for this ideal Otto cycle when it produces 120 hp. The properties of air at room temperature are R = 0.3704 psia·ft3/lbm·R, cp = 0.240 Btu/lbm·R,...
A Rankine power cycle with reheat uses water as the working fluid. The inlet conditions of...
A Rankine power cycle with reheat uses water as the working fluid. The inlet conditions of the first stage turbine are 14MPa and 600oC. All the turbines are known to have isentropic efficiency of 85%, however the pump is assumed as an isentropic pump. If the maximum temperature is kept at 600oC and the condenser pressure is 6 kPa, by constructing a suitable plot, show that having more than 2 reheat stages is not practical. (Hint: Take at least three...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT