In: Math
The data set below contains the electricity costs, in dollars, during July 2013 for a random sample of
30 one-bedroom apartments in a large city. Complete parts (a) and (b).
136 |
91 |
199 |
184 |
114 |
196 |
124 |
132 |
146 |
140 |
138 |
168 |
141 |
155 |
193 |
159 |
86 |
175 |
181 |
148 |
210 |
155 |
98 |
163 |
222 |
149 |
111 |
162 |
170 |
116 |
a. Decide whether the data appear to be approximately normally distributed by comparing data characteristics to theoretical properties.
A.No, the mean and median of the data are too different for the distribution to be normal.
B.No, the range of the data is too great for the distribution to be normal.
C.Yes, the distribution of the data appears to closely resemble a normal distribution.
D.No, the interquartile range of the data is too small for the distribution to be normal
B) Decide whether the data appear to be approximately normally distributed by constructing a normal probability plot.
X | (X - X̄)² |
136 | 258.14 |
91 | 3729.14 |
199 | 2202.74 |
184 | 1019.74 |
114 | 1449.07 |
196 | 1930.14 |
124 | 787.74 |
132 | 402.67 |
146 | 36.80 |
140 | 145.60 |
138 | 197.87 |
168 | 253.87 |
141 | 122.47 |
155 | 8.60 |
193 | 1675.54 |
159 | 48.07 |
86 | 4364.80 |
175 | 525.94 |
181 | 837.14 |
148 | 16.54 |
210 | 3356.2711 |
155 | 8.6044 |
98 | 2923.2044 |
163 | 119.5378 |
222 | 4890.6711 |
149 | 9.4044 |
111 | 1686.4711 |
162 | 98.6711 |
170 | 321.6044 |
116 | 1300.8044 |
X | (X - X̄)² | |
total sum | 4562 | 34727.867 |
n | 30 | 30 |
mean = ΣX/n = 4562.000
/ 30 = 152.0667
sample variance = Σ(X - X̄)²/(n-1)=
34727.8667 / 29 =
1197.5126
sample std dev = √ [ Σ(X - X̄)²/(n-1)] =
√ 1197.5126 =
34.6051
Median=0.5(n+1)th value = 15.5 th value of
sorted data
= 152
range=max-min = 222 -
86 = 136
quartile , Q1 = 0.25(n+1)th value= 7.75 th
value of sorted data
= 130
Quartile , Q3 = 0.75(n+1)th value= 23.25 th
value of sorted data
= 176.5
IQR = Q3-Q1 = 46.5
Skewness= -0.0102
C.Yes, the distribution of the data appears to closely resemble a normal distribution.
b)
rank,i | (i-0.5)/n | z score | data |
1 | 0.0167 | -2.13 | 136 |
2 | 0.0500 | -1.64 | 86 |
3 | 0.0833 | -1.38 | 91 |
4 | 0.1167 | -1.19 | 98 |
5 | 0.1500 | -1.04 | 111 |
6 | 0.1833 | -0.90 | 114 |
7 | 0.2167 | -0.78 | 116 |
8 | 0.2500 | -0.67 | 124 |
9 | 0.2833 | -0.57 | 132 |
10 | 0.3167 | -0.48 | 138 |
11 | 0.3500 | -0.39 | 140 |
12 | 0.3833 | -0.30 | 141 |
13 | 0.4167 | -0.21 | 146 |
14 | 0.4500 | -0.13 | 148 |
15 | 0.4833 | -0.04 | 149 |
16 | 0.5167 | 0.04 | 155 |
17 | 0.5500 | 0.13 | 155 |
18 | 0.5833 | 0.21 | 159 |
19 | 0.6167 | 0.30 | 162 |
20 | 0.6500 | 0.39 | 163 |
21 | 0.6833 | 0.48 | 168 |
22 | 0.7167 | 0.57 | 170 |
23 | 0.7500 | 0.67 | 175 |
24 | 0.7833 | 0.78 | 181 |
25 | 0.8167 | 0.90 | 184 |
26 | 0.8500 | 1.04 | 193 |
27 | 0.8833 | 1.19 | 196 |
28 | 0.9167 | 1.38 | 199 |
29 | 0.9500 | 1.64 | 210 |
30 | 0.9833 | 2.13 | 222 |
data appear to be approximately normally distributed