In: Statistics and Probability
| Variables in Wooldridge's data set (description): | ||||
| Cross-sectional data set from Wooldridge | ||||
| 1. return % change stock price, 90-94 | ||||
| 2. dkr debt/capital, 1990 | ||||
| 3. eps earnings per share, 1990 | ||||
| 4. netinc net income, 1990 (millions $) | ||||
| 5. salary CEO salary, 1990 (thousands $) | ||||
| Dataset: | ||||
| return | dkr | eps | netinc | salary |
| -20.84211 | 4 | 48.1 | 1144 | 1090 |
| -9.138381 | 27.3 | -85.3 | 35 | 1923 |
| 86.21795 | 36.8 | -44.1 | 127 | 1012 |
| 131.8367 | 46.4 | 192.4 | 367 | 579 |
| -8.189655 | 36.2 | -60.4 | 214 | 600 |
| -26.00733 | 18.7 | -79.8 | 118 | 735 |
| 52.27273 | 34.4 | 39 | 175 | 994 |
| -36.10315 | 57.8 | -62.8 | 1692 | 1227 |
| 3.508772 | 33.4 | -16.2 | 157 | 913 |
| 28.61953 | 33.4 | -19.1 | 315 | 733 |
| -21.62162 | 16.7 | 12.8 | 407 | 1247 |
| 6.574394 | 18.3 | -34.8 | 165 | 925 |
| 100.6061 | 27.6 | -8.6 | 288 | 602 |
| -5.21327 | 27.3 | 9.5 | 147 | 1006 |
| -27.6 | 35 | 19.3 | 177 | 593 |
| -33.33333 | 12.3 | 59.5 | 1845 | 3142 |
| -43.35938 | 53.9 | 12.8 | 1013 | 1893 |
| 32.14286 | 33.2 | 9 | 829 | 1740 |
| -6.603774 | 19.9 | 5 | 475 | 1558 |
| -7.03125 | 31.4 | 2.7 | 230 | 1095 |
| 2.564103 | 14.5 | 2.6 | 335 | 1235 |
| 3.361345 | 0 | 16 | 63 | 569 |
| -5.779335 | 32.9 | -42.6 | 1537 | 930 |
| -65 | 36.1 | 9.1 | 228 | 940 |
| -9.666667 | 6.6 | 20.6 | 174 | 926 |
| 64.38849 | 20.4 | -3.4 | 191 | 756 |
| -20.93023 | 41.8 | 13.4 | 4237 | 2969 |
| 50.53078 | 40.2 | 43.5 | 1131 | 3836 |
| 5.109489 | 10.9 | 13.9 | 66 | 477 |
| 104.5685 | 69.9 | 4.3 | 282 | 2600 |
| -27.22513 | 68.1 | -54.4 | 151 | 1182 |
| -35.07194 | 25.7 | 8.6 | 229 | 930 |
| -52.02206 | 4.2 | 15.7 | 939 | 1165 |
| -58.97436 | 26.7 | 28.8 | 24 | 357 |
| -41.62791 | 34.1 | 13.8 | 1207 | 1704 |
| -47.88462 | 18.2 | 15.7 | 127 | 1336 |
| -20.12987 | 10.7 | -42.1 | 217 | 1345 |
| 63.48315 | 3.8 | -1.8 | 290 | 578 |
| -0.6423983 | 15.2 | 5.8 | 522 | 932 |
| -12.10191 | 1.5 | 14.2 | 64 | 518 |
| 59.9359 | 12.7 | 4.6 | 613 | 1769 |
| -10.81081 | 15.5 | 4.2 | 474 | 1942 |
| -24.9467 | 28.9 | 5 | 27 | 1416 |
| -7.925408 | 0 | 7.9 | 113 | 729 |
| -46.75325 | 22.9 | -30.5 | 147 | 1081 |
| -18.7056 | 40.1 | 20.8 | 138 | 1123 |
| -17.57576 | 33.3 | -5.7 | 112 | 1048 |
| 43.54166 | 2.8 | 11.9 | 156 | 773 |
| -8.333333 | 26.5 | 0.8 | 114 | 763 |
| -37.31343 | 13.8 | 6.6 | 204 | 1191 |
| 6.918239 | 51.3 | -2.5 | 208 | 727 |
| 16.10942 | 46.6 | -65.1 | 317 | 947 |
| 9.405941 | 17.9 | 266.6 | 1383 | 3667 |
| -58.92857 | 24.5 | 17.6 | 824 | 11338 |
| 4.651163 | 19 | -61.6 | 211 | 1017 |
| -8.709826 | 28.7 | -26.3 | 415 | 1434 |
| -30.52326 | 21.7 | 17.9 | 290 | 918 |
| -36.57143 | 18 | 6.7 | 76 | 780 |
| -2.506964 | 29.3 | 11.9 | 178 | 842 |
| -33.0091 | 3.6 | 6.9 | 1305 | 1275 |
| -5.084746 | 15.4 | 29.8 | 103 | 1064 |
| -21.76871 | 5.5 | 17.2 | 130 | 725 |
| -8.641975 | 35.5 | -17.5 | 1525 | 2262 |
| -34.05904 | 23.8 | -49.9 | 1349 | 1359 |
| 21.5 | 13.5 | 3 | 3940 | 1550 |
| 34.42361 | 16.3 | -7.7 | 1724 | 1872 |
| -29.66361 | 22.3 | -89.3 | 8 | 488 |
| 1.698514 | 25.6 | -49.9 | 1349 | 1938 |
| -8.403361 | 51.3 | -21.1 | 337 | 1186 |
| -15.13158 | 44.9 | 27.4 | 249 | 1300 |
| -9.6 | 44.3 | 18.1 | 540 | 1338 |
| 14.95327 | 26.3 | -31.2 | 115 | 4206 |
| 3.125 | 1 | 19.9 | 122 | 832 |
| -18.76641 | 17.8 | 16.7 | 474 | 1147 |
| 6.932773 | 12 | -16.4 | 395 | 1278 |
| -30.08048 | 23.7 | -8.9 | 879 | 1249 |
| -8.704062 | 35.1 | -10.9 | 361 | 2146 |
| 34.62783 | 14.6 | -11.2 | 265 | 574 |
| -37.44395 | 33.7 | 19.3 | 233 | 1814 |
| 10.6383 | 0 | 6.8 | 475 | 2193 |
| 19.38775 | 6.5 | 13.9 | 216 | 778 |
| -50.31446 | 4 | 11.1 | 399 | 2332 |
| 111.3757 | 2.1 | -13.1 | 739 | 1366 |
| -21.91235 | 20.1 | -22.9 | 4150 | 2011 |
| -29.74138 | 0 | 60.9 | 317 | 1162 |
| -44.75806 | 14.9 | 81.3 | 76 | 267 |
| 72.92577 | 45.9 | -62.4 | 220 | 1190 |
| -22.51462 | 8.1 | 90.2 | 186 | 1101 |
| 2.544529 | 9.1 | 23.9 | 517 | 1494 |
| 47.42268 | 61.9 | -22.4 | 460 | 1500 |
| 33.40708 | 27.4 | -11.7 | 743 | 1444 |
| 32.31292 | 36.1 | -29.3 | 157 | 549 |
| 35.7466 | 50.6 | -68.7 | 206 | 647 |
| -13.63636 | 32.7 | -5.8 | 169 | 552 |
| 40.17857 | 18.3 | 17.4 | 147 | 806 |
| 52.4173 | 50.9 | 10.6 | 341 | 783 |
| -11.74377 | 20.2 | 12.6 | 1593 | 1439 |
| -44.82143 | 0 | -68 | 21 | 740 |
| -84.8881 | 30.6 | 15.6 | 502 | 1033 |
| -70.2957 | 21.1 | 16.2 | 327 | 1356 |
| -6.766917 | 29.8 | -61.3 | 123 | 537 |
| 22.41379 | 27.4 | -0.4 | 387 | 1300 |
| 17.84141 | 35.4 | -88.2 | 23 | 1030 |
| 22.04969 | 1.8 | 20.2 | 185 | 1188 |
| 6.476399 | 11.9 | 4.5 | 184 | 424 |
| 52.77778 | 46.3 | 88.5 | 265 | 1283 |
| 5.483029 | 32.2 | -50.1 | 90 | 799 |
| -47.74775 | 13.9 | 17.4 | 220 | 694 |
| -20.96154 | 8.9 | 10.3 | 152 | 598 |
| 25.59727 | 44.8 | 45.4 | 152 | 1587 |
| -48.02868 | 32.2 | 20.1 | 379 | 1836 |
| -30.81232 | 2.1 | 6.7 | 388 | 1212 |
| 12.75168 | 34.9 | -22.5 | 101 | 300 |
| -38.65979 | 28.8 | -11.7 | 738 | 997 |
| -6.684492 | 12.2 | 13.2 | 175 | 917 |
| -42.43903 | 25 | 3.2 | 226 | 767 |
| 31.69399 | 46.2 | -15.1 | 128 | 581 |
| 14.28571 | 4.1 | 5.2 | 205 | 565 |
| -10.46512 | 0.2 | 10.9 | 125 | 722 |
| -4.635762 | 2.4 | 10.4 | 76 | 439 |
| 7.97546 | 79.5 | 24.3 | 130 | 780 |
| -67.5 | 31.8 | 20.9 | 667 | 1571 |
| -8.091287 | 6 | -30.4 | 70 | 526 |
| -22.50804 | 38.3 | 11.6 | 185 | 752 |
| -40.625 | 27.9 | 7.5 | 1299 | 1296 |
| -55.2809 | 34.1 | -13.8 | 1134 | 1289 |
| 2.51938 | 47.7 | 19.4 | 280 | 1264 |
| -43.42432 | 30 | 2.1 | 1156 | 960 |
| -36.79061 | 27.5 | 2.5 | 1131 | 1380 |
| -52.10356 | 2.2 | 27.5 | 191 | 1222 |
| 19.4 | 2.8 | 42.3 | 267 | 545 |
| 107.8947 | 10.5 | 16.3 | 172 | 14336 |
| 52.54902 | 37.2 | -87 | 4 | 889 |
| -27.02703 | 18.8 | 19.7 | 65 | 653 |
| -47.1831 | 32.4 | 26.1 | 757 | 1630 |
| -55.68513 | 39.8 | 16.6 | 365 | 334 |
| -23.03665 | 47.3 | -15.9 | 187 | 447 |
| -9.40171 | 40.4 | -3.5 | 524 | 732 |
| -62.85714 | 42.5 | -5.7 | 214 | 506 |
| -31.33047 | 47.4 | -30.1 | 621 | 884 |
| -19.14063 | 37.9 | 12.6 | 187 | 334 |
| 38.13814 | 53.9 | 45.1 | 3523 |
1316 |
3. Compute the 90%, 95%, and 99% confidence intervals for the
intercept. What do you conclude
with respect to the following hypothesis: “If everything else were
equal to zero, the predicted
(base) return would be 35%”?
|
Regression Statistics |
|
|
Multiple R |
0.199 |
|
R Square |
0.039 |
|
Adjusted R Square |
0.011 |
|
Standard Error |
39.193 |
|
Observations |
142 |
|
Coefficients |
Standard Error |
t Stat |
P-value |
Lower 90.0% |
Upper 90.0% |
Lower 95% |
Upper 95% |
Lower 99.0% |
Upper 99.0% |
|
|
Intercept |
-14.370 |
6.894 |
-2.085 |
0.039 |
-25.786 |
-2.954 |
-28.002 |
-0.739 |
-32.378 |
3.637 |
|
dkr |
0.321 |
0.201 |
1.595 |
0.113 |
-0.012 |
0.653 |
-0.077 |
0.718 |
-0.204 |
0.845 |
|
eps |
0.043 |
0.078 |
0.546 |
0.586 |
-0.087 |
0.172 |
-0.112 |
0.197 |
-0.161 |
0.247 |
|
netinc |
-0.005 |
0.005 |
-1.093 |
0.276 |
-0.013 |
0.003 |
-0.014 |
0.004 |
-0.017 |
0.007 |
|
salary |
0.003 |
0.002 |
1.595 |
0.113 |
0.000 |
0.007 |
-0.001 |
0.008 |
-0.002 |
0.009 |
Confidence intervals for Intercept
90%CI = (-25.786 , -2.954)
95% CI = (-28.002, -0.739)
99%CI = ( - 32.378 , 3.637)
What do you conclude
with respect to the following hypothesis: “If everything else were
equal to zero, the predicted
(base) return would be 35%”?
COnclusions:-
with 90% confidence level
We can reject the given hypothesis, because zero is not included in the 90% CI hence we conclude return is not equal to 35% when everything else were equal to zero.
with 95% confidence level
We can reject the given hypothesis, because zero is not included in the 95% CI hence we conclude return is not equal to 35% when everything else were equal to zero.
with 99% Confidence level
We cannot reject the given hypothesis, because zero is included in the 99% CI hence we conclude return is equal to 35% when everything else were equal to zero.
But as the 99% CI does not contain 35%.