In: Statistics and Probability
Variables in Wooldridge's data set (description): | ||||
Cross-sectional data set from Wooldridge | ||||
1. return % change stock price, 90-94 | ||||
2. dkr debt/capital, 1990 | ||||
3. eps earnings per share, 1990 | ||||
4. netinc net income, 1990 (millions $) | ||||
5. salary CEO salary, 1990 (thousands $) | ||||
Dataset: | ||||
return | dkr | eps | netinc | salary |
-20.84211 | 4 | 48.1 | 1144 | 1090 |
-9.138381 | 27.3 | -85.3 | 35 | 1923 |
86.21795 | 36.8 | -44.1 | 127 | 1012 |
131.8367 | 46.4 | 192.4 | 367 | 579 |
-8.189655 | 36.2 | -60.4 | 214 | 600 |
-26.00733 | 18.7 | -79.8 | 118 | 735 |
52.27273 | 34.4 | 39 | 175 | 994 |
-36.10315 | 57.8 | -62.8 | 1692 | 1227 |
3.508772 | 33.4 | -16.2 | 157 | 913 |
28.61953 | 33.4 | -19.1 | 315 | 733 |
-21.62162 | 16.7 | 12.8 | 407 | 1247 |
6.574394 | 18.3 | -34.8 | 165 | 925 |
100.6061 | 27.6 | -8.6 | 288 | 602 |
-5.21327 | 27.3 | 9.5 | 147 | 1006 |
-27.6 | 35 | 19.3 | 177 | 593 |
-33.33333 | 12.3 | 59.5 | 1845 | 3142 |
-43.35938 | 53.9 | 12.8 | 1013 | 1893 |
32.14286 | 33.2 | 9 | 829 | 1740 |
-6.603774 | 19.9 | 5 | 475 | 1558 |
-7.03125 | 31.4 | 2.7 | 230 | 1095 |
2.564103 | 14.5 | 2.6 | 335 | 1235 |
3.361345 | 0 | 16 | 63 | 569 |
-5.779335 | 32.9 | -42.6 | 1537 | 930 |
-65 | 36.1 | 9.1 | 228 | 940 |
-9.666667 | 6.6 | 20.6 | 174 | 926 |
64.38849 | 20.4 | -3.4 | 191 | 756 |
-20.93023 | 41.8 | 13.4 | 4237 | 2969 |
50.53078 | 40.2 | 43.5 | 1131 | 3836 |
5.109489 | 10.9 | 13.9 | 66 | 477 |
104.5685 | 69.9 | 4.3 | 282 | 2600 |
-27.22513 | 68.1 | -54.4 | 151 | 1182 |
-35.07194 | 25.7 | 8.6 | 229 | 930 |
-52.02206 | 4.2 | 15.7 | 939 | 1165 |
-58.97436 | 26.7 | 28.8 | 24 | 357 |
-41.62791 | 34.1 | 13.8 | 1207 | 1704 |
-47.88462 | 18.2 | 15.7 | 127 | 1336 |
-20.12987 | 10.7 | -42.1 | 217 | 1345 |
63.48315 | 3.8 | -1.8 | 290 | 578 |
-0.6423983 | 15.2 | 5.8 | 522 | 932 |
-12.10191 | 1.5 | 14.2 | 64 | 518 |
59.9359 | 12.7 | 4.6 | 613 | 1769 |
-10.81081 | 15.5 | 4.2 | 474 | 1942 |
-24.9467 | 28.9 | 5 | 27 | 1416 |
-7.925408 | 0 | 7.9 | 113 | 729 |
-46.75325 | 22.9 | -30.5 | 147 | 1081 |
-18.7056 | 40.1 | 20.8 | 138 | 1123 |
-17.57576 | 33.3 | -5.7 | 112 | 1048 |
43.54166 | 2.8 | 11.9 | 156 | 773 |
-8.333333 | 26.5 | 0.8 | 114 | 763 |
-37.31343 | 13.8 | 6.6 | 204 | 1191 |
6.918239 | 51.3 | -2.5 | 208 | 727 |
16.10942 | 46.6 | -65.1 | 317 | 947 |
9.405941 | 17.9 | 266.6 | 1383 | 3667 |
-58.92857 | 24.5 | 17.6 | 824 | 11338 |
4.651163 | 19 | -61.6 | 211 | 1017 |
-8.709826 | 28.7 | -26.3 | 415 | 1434 |
-30.52326 | 21.7 | 17.9 | 290 | 918 |
-36.57143 | 18 | 6.7 | 76 | 780 |
-2.506964 | 29.3 | 11.9 | 178 | 842 |
-33.0091 | 3.6 | 6.9 | 1305 | 1275 |
-5.084746 | 15.4 | 29.8 | 103 | 1064 |
-21.76871 | 5.5 | 17.2 | 130 | 725 |
-8.641975 | 35.5 | -17.5 | 1525 | 2262 |
-34.05904 | 23.8 | -49.9 | 1349 | 1359 |
21.5 | 13.5 | 3 | 3940 | 1550 |
34.42361 | 16.3 | -7.7 | 1724 | 1872 |
-29.66361 | 22.3 | -89.3 | 8 | 488 |
1.698514 | 25.6 | -49.9 | 1349 | 1938 |
-8.403361 | 51.3 | -21.1 | 337 | 1186 |
-15.13158 | 44.9 | 27.4 | 249 | 1300 |
-9.6 | 44.3 | 18.1 | 540 | 1338 |
14.95327 | 26.3 | -31.2 | 115 | 4206 |
3.125 | 1 | 19.9 | 122 | 832 |
-18.76641 | 17.8 | 16.7 | 474 | 1147 |
6.932773 | 12 | -16.4 | 395 | 1278 |
-30.08048 | 23.7 | -8.9 | 879 | 1249 |
-8.704062 | 35.1 | -10.9 | 361 | 2146 |
34.62783 | 14.6 | -11.2 | 265 | 574 |
-37.44395 | 33.7 | 19.3 | 233 | 1814 |
10.6383 | 0 | 6.8 | 475 | 2193 |
19.38775 | 6.5 | 13.9 | 216 | 778 |
-50.31446 | 4 | 11.1 | 399 | 2332 |
111.3757 | 2.1 | -13.1 | 739 | 1366 |
-21.91235 | 20.1 | -22.9 | 4150 | 2011 |
-29.74138 | 0 | 60.9 | 317 | 1162 |
-44.75806 | 14.9 | 81.3 | 76 | 267 |
72.92577 | 45.9 | -62.4 | 220 | 1190 |
-22.51462 | 8.1 | 90.2 | 186 | 1101 |
2.544529 | 9.1 | 23.9 | 517 | 1494 |
47.42268 | 61.9 | -22.4 | 460 | 1500 |
33.40708 | 27.4 | -11.7 | 743 | 1444 |
32.31292 | 36.1 | -29.3 | 157 | 549 |
35.7466 | 50.6 | -68.7 | 206 | 647 |
-13.63636 | 32.7 | -5.8 | 169 | 552 |
40.17857 | 18.3 | 17.4 | 147 | 806 |
52.4173 | 50.9 | 10.6 | 341 | 783 |
-11.74377 | 20.2 | 12.6 | 1593 | 1439 |
-44.82143 | 0 | -68 | 21 | 740 |
-84.8881 | 30.6 | 15.6 | 502 | 1033 |
-70.2957 | 21.1 | 16.2 | 327 | 1356 |
-6.766917 | 29.8 | -61.3 | 123 | 537 |
22.41379 | 27.4 | -0.4 | 387 | 1300 |
17.84141 | 35.4 | -88.2 | 23 | 1030 |
22.04969 | 1.8 | 20.2 | 185 | 1188 |
6.476399 | 11.9 | 4.5 | 184 | 424 |
52.77778 | 46.3 | 88.5 | 265 | 1283 |
5.483029 | 32.2 | -50.1 | 90 | 799 |
-47.74775 | 13.9 | 17.4 | 220 | 694 |
-20.96154 | 8.9 | 10.3 | 152 | 598 |
25.59727 | 44.8 | 45.4 | 152 | 1587 |
-48.02868 | 32.2 | 20.1 | 379 | 1836 |
-30.81232 | 2.1 | 6.7 | 388 | 1212 |
12.75168 | 34.9 | -22.5 | 101 | 300 |
-38.65979 | 28.8 | -11.7 | 738 | 997 |
-6.684492 | 12.2 | 13.2 | 175 | 917 |
-42.43903 | 25 | 3.2 | 226 | 767 |
31.69399 | 46.2 | -15.1 | 128 | 581 |
14.28571 | 4.1 | 5.2 | 205 | 565 |
-10.46512 | 0.2 | 10.9 | 125 | 722 |
-4.635762 | 2.4 | 10.4 | 76 | 439 |
7.97546 | 79.5 | 24.3 | 130 | 780 |
-67.5 | 31.8 | 20.9 | 667 | 1571 |
-8.091287 | 6 | -30.4 | 70 | 526 |
-22.50804 | 38.3 | 11.6 | 185 | 752 |
-40.625 | 27.9 | 7.5 | 1299 | 1296 |
-55.2809 | 34.1 | -13.8 | 1134 | 1289 |
2.51938 | 47.7 | 19.4 | 280 | 1264 |
-43.42432 | 30 | 2.1 | 1156 | 960 |
-36.79061 | 27.5 | 2.5 | 1131 | 1380 |
-52.10356 | 2.2 | 27.5 | 191 | 1222 |
19.4 | 2.8 | 42.3 | 267 | 545 |
107.8947 | 10.5 | 16.3 | 172 | 14336 |
52.54902 | 37.2 | -87 | 4 | 889 |
-27.02703 | 18.8 | 19.7 | 65 | 653 |
-47.1831 | 32.4 | 26.1 | 757 | 1630 |
-55.68513 | 39.8 | 16.6 | 365 | 334 |
-23.03665 | 47.3 | -15.9 | 187 | 447 |
-9.40171 | 40.4 | -3.5 | 524 | 732 |
-62.85714 | 42.5 | -5.7 | 214 | 506 |
-31.33047 | 47.4 | -30.1 | 621 | 884 |
-19.14063 | 37.9 | 12.6 | 187 | 334 |
38.13814 | 53.9 | 45.1 | 3523 |
1316 |
3. Compute the 90%, 95%, and 99% confidence intervals for the
intercept. What do you conclude
with respect to the following hypothesis: “If everything else were
equal to zero, the predicted
(base) return would be 35%”?
Regression Statistics |
|
Multiple R |
0.199 |
R Square |
0.039 |
Adjusted R Square |
0.011 |
Standard Error |
39.193 |
Observations |
142 |
Coefficients |
Standard Error |
t Stat |
P-value |
Lower 90.0% |
Upper 90.0% |
Lower 95% |
Upper 95% |
Lower 99.0% |
Upper 99.0% |
|
Intercept |
-14.370 |
6.894 |
-2.085 |
0.039 |
-25.786 |
-2.954 |
-28.002 |
-0.739 |
-32.378 |
3.637 |
dkr |
0.321 |
0.201 |
1.595 |
0.113 |
-0.012 |
0.653 |
-0.077 |
0.718 |
-0.204 |
0.845 |
eps |
0.043 |
0.078 |
0.546 |
0.586 |
-0.087 |
0.172 |
-0.112 |
0.197 |
-0.161 |
0.247 |
netinc |
-0.005 |
0.005 |
-1.093 |
0.276 |
-0.013 |
0.003 |
-0.014 |
0.004 |
-0.017 |
0.007 |
salary |
0.003 |
0.002 |
1.595 |
0.113 |
0.000 |
0.007 |
-0.001 |
0.008 |
-0.002 |
0.009 |
Confidence intervals for Intercept
90%CI = (-25.786 , -2.954)
95% CI = (-28.002, -0.739)
99%CI = ( - 32.378 , 3.637)
What do you conclude
with respect to the following hypothesis: “If everything else were
equal to zero, the predicted
(base) return would be 35%”?
COnclusions:-
with 90% confidence level
We can reject the given hypothesis, because zero is not included in the 90% CI hence we conclude return is not equal to 35% when everything else were equal to zero.
with 95% confidence level
We can reject the given hypothesis, because zero is not included in the 95% CI hence we conclude return is not equal to 35% when everything else were equal to zero.
with 99% Confidence level
We cannot reject the given hypothesis, because zero is included in the 99% CI hence we conclude return is equal to 35% when everything else were equal to zero.
But as the 99% CI does not contain 35%.