In: Math
The price of a share of stock divided by the company's estimated future earnings per share is called the P/E ratio. High P/E ratios usually indicate "growth" stocks, or maybe stocks that are simply overpriced. Low P/E ratios indicate "value" stocks or bargain stocks. A random sample of 51 of the largest companies in the United States gave the following P/E ratios†.
11 | 35 | 19 | 13 | 15 | 21 | 40 | 18 | 60 | 72 | 9 | 20 |
29 | 53 | 16 | 26 | 21 | 14 | 21 | 27 | 10 | 12 | 47 | 14 |
33 | 14 | 18 | 17 | 20 | 19 | 13 | 25 | 23 | 27 | 5 | 16 |
8 | 49 | 44 | 20 | 27 | 8 | 19 | 12 | 31 | 67 | 51 | 26 |
19 | 18 | 32 |
(a) Use a calculator with mean and sample standard deviation keys to find the sample mean x and sample standard deviation s. (Round your answers to one decimal place.)
x = | |
s = |
(b) Find a 90% confidence interval for the P/E population mean μ of
all large U.S. companies. (Round your answers to one decimal
place.)
lower limit | |
upper limit |
(c) Find a 99% confidence interval for the P/E population mean μ of
all large U.S. companies. (Round your answers to one decimal
place.)
lower limit | |
upper limit |
Values ( X ) | Σ ( Xi- X̅ )2 | |
11 | 200.9732 | |
35 | 96.5012 | |
19 | 38.1492 | |
13 | 148.2672 | |
15 | 103.5612 | |
21 | 17.4432 | |
40 | 219.7362 | |
18 | 51.5022 | |
60 | 1212.6762 | |
72 | 2192.4402 | |
9 | 261.6792 | |
20 | 26.7962 | |
29 | 14.6192 | |
53 | 774.1472 | |
16 | 84.2082 | |
26 | 0.6782 | |
21 | 17.4432 | |
14 | 124.9142 | |
21 | 17.4432 | |
27 | 3.3252 | |
10 | 230.3262 | |
12 | 173.6202 | |
47 | 476.2652 | |
14 | 124.9142 | |
33 | 61.2072 | |
14 | 124.9142 | |
18 | 51.5022 | |
17 | 66.8552 | |
20 | 26.7962 | |
19 | 38.1492 | |
13 | 148.2672 | |
25 | 0.0312 | |
23 | 4.7372 | |
27 | 3.3252 | |
5 | 407.0912 | |
16 | 84.2082 | |
8 | 295.0322 | |
49 | 567.5592 | |
44 | 354.3242 | |
20 | 26.7962 | |
27 | 3.3252 | |
8 | 295.0322 | |
19 | 38.1492 | |
12 | 173.6202 | |
31 | 33.9132 | |
67 | 1749.2052 | |
51 | 666.8532 | |
26 | 0.6782 | |
19 | 38.1492 | |
18 | 51.5022 | |
32 | 46.5602 | |
Total | 1284 | 11969.4142 |
Part a)
Mean X̅ = Σ Xi / n
X̅ = 1284 / 51 = 25.2
Sample Standard deviation SX = √ ( (Xi - X̅
)2 / n - 1 )
SX = √ ( 11969.44 / 51 -1 ) = 15.5
Part b)
Confidence Interval
X̅ ± t(α/2, n-1) S/√(n)
t(α/2, n-1) = t(0.1 /2, 51- 1 ) = 1.676
25.1765 ± t(0.1/2, 51 -1) * 15.4722/√(51)
Lower Limit = 25.1765 - t(0.1/2, 51 -1) 15.4722/√(51)
Lower Limit = 21.5454 ≈ 21.4
Upper Limit = 25.1765 + t(0.1/2, 51 -1) 15.4722/√(51)
Upper Limit = 28.8076 ≈ 28.8
90% Confidence interval is ( 21.5 , 28.8 )
Part c)
Confidence Interval
X̅ ± t(α/2, n-1) S/√(n)
t(α/2, n-1) = t(0.01 /2, 51- 1 ) = 2.678
25.1765 ± t(0.01/2, 51 -1) * 15.4722/√(51)
Lower Limit = 25.1765 - t(0.01/2, 51 -1) 15.4722/√(51)
Lower Limit = 19.3745 ≈ 19.4
Upper Limit = 25.1765 + t(0.01/2, 51 -1) 15.4722/√(51)
Upper Limit = 30.9785 ≈ 31.0
99% Confidence interval is ( 19.4 , 31.0 )