In: Math
Q) Let Xbe a discrete random variable representing the maximum value of the two numbers on
throwing two identical balanced dice for one time only. Then: |
||||||
a) Find the possible values of the random variable X for the following cases: |
||||||
b) Determine the probability mass function P (X = ·). |
||||||
c) Draw the graphical representation of the probability mass function P (X = ·). |
||||||
d) Determine the distribution functionF . |
||||||
X |
||||||
e) Sketch the functions in part (a). |
||||||
f) Calculate the mean and variance for the random variable X. |
||||||
g) Calculate the standard deviation ofX. |
||||||
h) Calculate the standard deviation of the random variable Y:= 2X + 5 . |
a)
possible values of the random variable X for the following cases: 1,2,3,4,5,6
b) probability mass function P(X=x)=(2n-1)/36
x | f(x) |
1 | 1/36 |
2 | 1/12 |
3 | 5/36 |
4 | 7/36 |
5 | 1/4 |
6 | 11/36 |
c)
d)
x | F(x) |
1 | 1/36 |
2 | 1/9 |
3 | 1/4 |
4 | 4/9 |
5 | 25/36 |
6 | 1 |
e)
f)
x | f(x) | xP(x) | x2P(x) |
1 | 1/36 | 0.028 | 0.028 |
2 | 1/12 | 0.167 | 0.333 |
3 | 5/36 | 0.417 | 1.250 |
4 | 7/36 | 0.778 | 3.111 |
5 | 1/4 | 1.250 | 6.250 |
6 | 11/36 | 1.833 | 11.000 |
total | 4.472 | 21.972 | |
E(x) =μ= | ΣxP(x) = | 4.4722 | |
E(x2) = | Σx2P(x) = | 21.9722 | |
Var(x)=σ2 = | E(x2)-(E(x))2= | 1.9715 | |
std deviation= | σ= √σ2 = | 1.4041 |
mean of X=4.4722
variance =1.9715
g)std deviation =1.4041
h)
standard deviation of the random variable Y:=SD(2X+5)=2*SD(X)=2.8082