In: Math
Q) Let Xbe a discrete random variable representing the maximum value of the two numbers on
| 
 throwing two identical balanced dice for one time only. Then:  | 
||||||
| 
 a) Find the possible values of the random variable X for the following cases:  | 
||||||
| 
 b) Determine the probability mass function P (X = ·).  | 
||||||
| 
 c) Draw the graphical representation of the probability mass function P (X = ·).  | 
||||||
| 
 d) Determine the distribution functionF .  | 
||||||
| 
 X  | 
||||||
| 
 e) Sketch the functions in part (a).  | 
||||||
| 
 f) Calculate the mean and variance for the random variable X.  | 
||||||
| 
 g) Calculate the standard deviation ofX.  | 
||||||
| 
 h) Calculate the standard deviation of the random variable Y:= 2X + 5 .  | 
||||||
a)
possible values of the random variable X for the following cases: 1,2,3,4,5,6
b) probability mass function P(X=x)=(2n-1)/36
| x | f(x) | 
| 1 | 1/36 | 
| 2 | 1/12 | 
| 3 | 5/36 | 
| 4 | 7/36 | 
| 5 | 1/4 | 
| 6 | 11/36 | 
c)

d)
| x | F(x) | 
| 1 | 1/36 | 
| 2 | 1/9 | 
| 3 | 1/4 | 
| 4 | 4/9 | 
| 5 | 25/36 | 
| 6 | 1 | 
e)

f)
| x | f(x) | xP(x) | x2P(x) | 
| 1 | 1/36 | 0.028 | 0.028 | 
| 2 | 1/12 | 0.167 | 0.333 | 
| 3 | 5/36 | 0.417 | 1.250 | 
| 4 | 7/36 | 0.778 | 3.111 | 
| 5 | 1/4 | 1.250 | 6.250 | 
| 6 | 11/36 | 1.833 | 11.000 | 
| total | 4.472 | 21.972 | |
| E(x) =μ= | ΣxP(x) = | 4.4722 | |
| E(x2) = | Σx2P(x) = | 21.9722 | |
| Var(x)=σ2 = | E(x2)-(E(x))2= | 1.9715 | |
| std deviation= | σ= √σ2 = | 1.4041 | 
mean of X=4.4722
variance =1.9715
g)std deviation =1.4041
h)
standard deviation of the random variable Y:=SD(2X+5)=2*SD(X)=2.8082