In: Math
Suppose that you roll a die and your score is the
number shown on the die. On the other
hand, suppose that your friend rolls five dice and his score is the
number of 6’s shown out of five rollings. Compute the
probability
(a) that the two scores are equal.
(b) that your friend’s score is strictly smaller than yours.
Please rate. Cheers !!!
X1 and X2 are the random variables representing the score of me (I) and my friend (II) respectively.
I have used I notation for me and II for my friend.
Below is the table -
me | Friend | ||||
Score | P(X1) | Score | P (X2) | Combination | P (X1) * P(X2) |
1 | 0.166667 | 0 | 0.401878 | P1 | 0.066979667 |
2 | 0.166667 | 0 | 0.401878 | P2 | 0.066979667 |
2 | 0.166667 | 1 | 0.401878 | P3 | 0.066979667 |
3 | 0.166667 | 0 | 0.401878 | P4 | 0.066979667 |
3 | 0.166667 | 1 | 0.401878 | P5 | 0.066979667 |
3 | 0.166667 | 2 | 0.160751 | P6 | 0.026791833 |
4 | 0.166667 | 0 | 0.401878 | P7 | 0.066979667 |
4 | 0.166667 | 1 | 0.401878 | P8 | 0.066979667 |
4 | 0.166667 | 2 | 0.160751 | P9 | 0.026791833 |
4 | 0.166667 | 3 | 0.03215 | P10 | 0.005358333 |
5 | 0.166667 | 0 | 0.401878 | P11 | 0.066979667 |
5 | 0.166667 | 1 | 0.401878 | P12 | 0.066979667 |
5 | 0.166667 | 2 | 0.160751 | P13 | 0.026791833 |
5 | 0.166667 | 3 | 0.03215 | P14 | 0.005358333 |
5 | 0.166667 | 4 | 0.003215 | P15 | 0.000535833 |
6 | 0.166667 | 0 | 0.401878 | P16 | 0.066979667 |
6 | 0.166667 | 1 | 0.401878 | P17 | 0.066979667 |
6 | 0.166667 | 2 | 0.160751 | P18 | 0.026791833 |
6 | 0.166667 | 3 | 0.03215 | P19 | 0.005358333 |
6 | 0.166667 | 4 | 0.003215 | P20 | 0.000535833 |
6 | 0.166667 | 5 | 0.000129 | P21 | 0.0000215 |
Sum | 0.86111183 |