In: Finance
A bond offers a coupon rate of 6%, paid annually, and has a maturity of 9 years. The current market yield is 14%. If market conditions remain unchanged, what should be the Capital Gains Yield of the bond?
| Step-1:Calculation of Current price of bond | |||||||||
| Present value of coupon | $ 296.78 | ||||||||
| Present value of Par value | $ 307.51 | ||||||||
| Present value of cash flows | $ 604.29 | ||||||||
| So, the price of bond is | $ 604.29 | ||||||||
| Working: | |||||||||
| # 1 | Annual coupon | = | Par Value * Coupon rate | ||||||
| = | 1000*6% | ||||||||
| = | $ 60.00 | ||||||||
| # 2 | Present value of annuity of 1 | = | (1-(1+i)^-n)/i | Where, | |||||
| = | (1-(1+0.14)^-9)/0.14 | i | 14% | ||||||
| = | 4.9463718 | n | 9 | ||||||
| # 3 | Present value of 1 | = | (1+i)^-n | ||||||
| = | (1+0.14)^-9 | ||||||||
| = | 0.3075079 | ||||||||
| # 4 | Present value of coupon | = | Coupon * Present value of annuity of 1 | ||||||
| = | $ 60.00 | * | 4.946372 | ||||||
| = | $ 296.78 | ||||||||
| # 5 | Present value of Par value | = | Par Value * Present value of 1 | ||||||
| = | $ 1,000.00 | * | 0.307508 | ||||||
| = | $ 307.51 | ||||||||
| Step-2:Calculation of dividend yield | |||||||||
| Dividend yield | = | Annual coupon / Current Price | |||||||
| = | $ 60.00 | / | $ 604.29 | ||||||
| = | 9.93% | ||||||||
| Step-3:Calculation of Capital gain yield | |||||||||
| Capital gain yield | = | Market yield | - | Dividend yield | |||||
| = | 14.00% | - | 9.93% | ||||||
| = | 4.07% | ||||||||
| Thus, | |||||||||
| Capital gain yield is 4.07% | |||||||||