In: Statistics and Probability
According to a recent Pew Research Center survey, 231 out of 371 Americans surveyed with just a high school diploma and 543 out of 634 Americans surveyed with a college degree have read at least one book in the last 12 months.
Based on these sample results and a 0.01 level of significance, can one infer that the proportion of Americans who have read at least one book in the last 12 months is higher for those with a college degree than for those with just a high school diploma?
Let , P1 be the population proportion of Americans surveyed with a college degree have read at least one book in the last 12 months and P2 be the population proportion of Americans surveyed with a school diploma have read at least one book in the last 12 months
Given : n1=634 ,X1=543 ,n2=371 , X2=231
The estimate of the sample proportions are ,
The pooled estimate is ,
Q=1-P=0.2299
Hypothesis: Vs
The critical value is ,
; From Z-table
The test statistic is ,
Decision : Here , teh value of the test statistic lies in the rejection region.
Therefore , reject Ho.
Conclusion : Hence , there is sufficien evidence to support the claim that the proportion of Americans who have read at least one book in the last 12 months is higher for those with a college degree than for those with just a high school diploma.