In: Finance
Future value of annuity | = | P{(1+r)^n-1}/r | ||||||
here, | ||||||||
Future value | = | $100,000 | ||||||
rate | = | 0.054/12=0.0045 per month | ||||||
time | = | 30*12=360 months | ||||||
100,000 | = | P[{(1+0.0045)^360}-1]/0.0045 | ||||||
100,000 | = | P*896.6133 | ||||||
100,000/896.6133 | = | P | ||||||
$111.53 | = | P | ||||||
Monthly installment | = | $111.53 | ||||||
Future value of this investment after 10 years | ||||||||
Rate | = | 0.0045 per month | ||||||
time | = | 10*12=120 months | ||||||
Future value after 10 years | = | 111.53[{(1=0.0045)^120}-1/0.0045 | ||||||
= | 111.53*158.6509 | |||||||
= | $17,694 | |||||||
Value of $17694 after 20 years (i.e. 30 years from now @ 0.0055(0.066/12) per month) | ||||||||
= | 17694*(1+00.55)^240 | |||||||
(this is value of single amount not annuity) | = | $65,997 | ||||||
After 10 years additional amount (in future value terms)required | ||||||||
= | 100,000-65997 | |||||||
= | $34,003 | |||||||
Applying the formula of future value again | ||||||||
34003 | = | P[{(1+0.0055)^240}-1]/0.0055 | ||||||
34003 | = | P*545.9813 | ||||||
34003/496.34 | = | P | ||||||
$68.50 | = | P | ||||||
New deposit is $68.5 per month | ||||||||
There may be minor differences due to decimal places. |