In: Finance
There is a par 30 year, 6% bond. What is the % alteration, if the ytm alters by 2%? Do it with duration alone. Then, find the change, if you include convexity also. The convexity is 40.
Please show formula and show all work.
Duration

| Period | Cash Flow | Discounting factor | PV Cash Flow | Duration Calc | 
| 0 | ($1,000.00) | =(1+YTM/number of coupon payments in the year)^period | =cashflow/discounting factor | =PV cashflow*period | 
| 1 | 60.00 | 1.06 | 56.60 | 56.60 | 
| 2 | 60.00 | 1.12 | 53.40 | 106.80 | 
| 3 | 60.00 | 1.19 | 50.38 | 151.13 | 
| 4 | 60.00 | 1.26 | 47.53 | 190.10 | 
| 5 | 60.00 | 1.34 | 44.84 | 224.18 | 
| 6 | 60.00 | 1.42 | 42.30 | 253.79 | 
| 7 | 60.00 | 1.50 | 39.90 | 279.32 | 
| 8 | 60.00 | 1.59 | 37.64 | 301.16 | 
| 9 | 60.00 | 1.69 | 35.51 | 319.63 | 
| 10 | 60.00 | 1.79 | 33.50 | 335.04 | 
| 11 | 60.00 | 1.90 | 31.61 | 347.68 | 
| 12 | 60.00 | 2.01 | 29.82 | 357.82 | 
| 13 | 60.00 | 2.13 | 28.13 | 365.69 | 
| 14 | 60.00 | 2.26 | 26.54 | 371.53 | 
| 15 | 60.00 | 2.40 | 25.04 | 375.54 | 
| 16 | 60.00 | 2.54 | 23.62 | 377.90 | 
| 17 | 60.00 | 2.69 | 22.28 | 378.79 | 
| 18 | 60.00 | 2.85 | 21.02 | 378.37 | 
| 19 | 60.00 | 3.03 | 19.83 | 376.78 | 
| 20 | 60.00 | 3.21 | 18.71 | 374.17 | 
| 21 | 60.00 | 3.40 | 17.65 | 370.64 | 
| 22 | 60.00 | 3.60 | 16.65 | 366.31 | 
| 23 | 60.00 | 3.82 | 15.71 | 361.28 | 
| 24 | 60.00 | 4.05 | 14.82 | 355.65 | 
| 25 | 60.00 | 4.29 | 13.98 | 349.50 | 
| 26 | 60.00 | 4.55 | 13.19 | 342.90 | 
| 27 | 60.00 | 4.82 | 12.44 | 335.94 | 
| 28 | 60.00 | 5.11 | 11.74 | 328.66 | 
| 29 | 60.00 | 5.42 | 11.07 | 321.13 | 
| 30 | 1,060.00 | 5.74 | 184.56 | 5,536.70 | 
| Total | 14,590.72 | 
| Macaulay duration =(∑ Duration calc)/(bond price*number of coupon per year) | 
| =14590.72/(1000*1) | 
| =14.590721 | 
| Modified duration = Macaulay duration/(1+YTM) | 
| =14.59/(1+0.06) | 
| =13.764831 | 
| Using only modified duration | 
| Mod.duration prediction = -Mod. Duration*Yield_Change*Bond_Price | 
| =-13.76*0.02*1000 | 
| =-275.3 | 
| %age change in bond price=Mod.duration prediction/bond price | 
| =-275.3/1000 | 
| =-27.53% | 
| New bond price = bond price+Modified duration prediction | 
| =1000-275.3 | 
| =724.7 | 
| Using convexity adjustment to modified duration | 
| Convexity adjustment = 0.5*convexity*Yield_Change^2*Bond_Price | 
| 0.5*40*0.02^2*1000 | 
| =8 | 
| %age change in bond price=(Mod.duration pred.+convex. Adj.)/bond price | 
| =(-275.3+8)/1000 | 
| =-26.73% | 
| New bond price = bond price+Mod.duration pred.+convex. Adj. | 
| =1000-275.3+8 | 
| =732.7 |