In: Finance
There is a par 30 year, 6% bond. What is the % alteration, if the ytm alters by 2%? Do it with duration alone. Then, find the change, if you include convexity also. The convexity is 40.
Please show formula and show all work.
Duration
Period | Cash Flow | Discounting factor | PV Cash Flow | Duration Calc |
0 | ($1,000.00) | =(1+YTM/number of coupon payments in the year)^period | =cashflow/discounting factor | =PV cashflow*period |
1 | 60.00 | 1.06 | 56.60 | 56.60 |
2 | 60.00 | 1.12 | 53.40 | 106.80 |
3 | 60.00 | 1.19 | 50.38 | 151.13 |
4 | 60.00 | 1.26 | 47.53 | 190.10 |
5 | 60.00 | 1.34 | 44.84 | 224.18 |
6 | 60.00 | 1.42 | 42.30 | 253.79 |
7 | 60.00 | 1.50 | 39.90 | 279.32 |
8 | 60.00 | 1.59 | 37.64 | 301.16 |
9 | 60.00 | 1.69 | 35.51 | 319.63 |
10 | 60.00 | 1.79 | 33.50 | 335.04 |
11 | 60.00 | 1.90 | 31.61 | 347.68 |
12 | 60.00 | 2.01 | 29.82 | 357.82 |
13 | 60.00 | 2.13 | 28.13 | 365.69 |
14 | 60.00 | 2.26 | 26.54 | 371.53 |
15 | 60.00 | 2.40 | 25.04 | 375.54 |
16 | 60.00 | 2.54 | 23.62 | 377.90 |
17 | 60.00 | 2.69 | 22.28 | 378.79 |
18 | 60.00 | 2.85 | 21.02 | 378.37 |
19 | 60.00 | 3.03 | 19.83 | 376.78 |
20 | 60.00 | 3.21 | 18.71 | 374.17 |
21 | 60.00 | 3.40 | 17.65 | 370.64 |
22 | 60.00 | 3.60 | 16.65 | 366.31 |
23 | 60.00 | 3.82 | 15.71 | 361.28 |
24 | 60.00 | 4.05 | 14.82 | 355.65 |
25 | 60.00 | 4.29 | 13.98 | 349.50 |
26 | 60.00 | 4.55 | 13.19 | 342.90 |
27 | 60.00 | 4.82 | 12.44 | 335.94 |
28 | 60.00 | 5.11 | 11.74 | 328.66 |
29 | 60.00 | 5.42 | 11.07 | 321.13 |
30 | 1,060.00 | 5.74 | 184.56 | 5,536.70 |
Total | 14,590.72 |
Macaulay duration =(∑ Duration calc)/(bond price*number of coupon per year) |
=14590.72/(1000*1) |
=14.590721 |
Modified duration = Macaulay duration/(1+YTM) |
=14.59/(1+0.06) |
=13.764831 |
Using only modified duration |
Mod.duration prediction = -Mod. Duration*Yield_Change*Bond_Price |
=-13.76*0.02*1000 |
=-275.3 |
%age change in bond price=Mod.duration prediction/bond price |
=-275.3/1000 |
=-27.53% |
New bond price = bond price+Modified duration prediction |
=1000-275.3 |
=724.7 |
Using convexity adjustment to modified duration |
Convexity adjustment = 0.5*convexity*Yield_Change^2*Bond_Price |
0.5*40*0.02^2*1000 |
=8 |
%age change in bond price=(Mod.duration pred.+convex. Adj.)/bond price |
=(-275.3+8)/1000 |
=-26.73% |
New bond price = bond price+Mod.duration pred.+convex. Adj. |
=1000-275.3+8 |
=732.7 |