Question

In: Math

Considerapopulationwhoseprobabilitiesaregivenby p(1)=p(2)=p(3)= 1 3 (a) DetermineE[X]. (b) DetermineSD(X). σ2σ n =√n SD(X)= In the preceding formula,...

Considerapopulationwhoseprobabilitiesaregivenby
p(1)=p(2)=p(3)= 1 3
(a) DetermineE[X]. (b) DetermineSD(X).
σ2σ n =√n
SD(X)=
In the preceding formula, σ is the population standard deviation, and n is the
(c) Let X denote the sample mean of a sample of size 2 from this population. Determine the possible values of X along with their probabilities.
(d) Usetheresultofpart(c)tocomputeE[X]andSD(X).
(e) Areyouranswersconsistent?

Solutions

Expert Solution

a)

x f(x) xP(x) x2P(x)
1.0000 1/3 0.333 0.333
2.0000 1/3 0.667 1.333
3.0000 1/3 1.000 3.000
total 2.000 4.667
E(x) =μ= ΣxP(x) = 2.0000
E(x2) = Σx2P(x) = 4.6667
Var(x)=σ2 = E(x2)-(E(x))2= 0.6667
std deviation=         σ= √σ2 = 0.8165

from above E(X)=2

b)SD(X)=0.8165

c)P(X=1)=P(x1=1 ; x2=1) =(1/3)*(!/3) =1/9

P(X=1.5)=P(x1=1 ; x2=2)+P(x1=2 ; x2=1) =(1/3)*(!/3)+(!/3)*(!/3)=2/9

P(X=2)=P(x1=2 ; x2=2)+P(x1=3 ; x2=1)+P(x1=1 ; x2=3) =(1/3)*(!/3)+ (1/3)*(!/3)+(!/3)*(!/3)=3/9=1/3

P(X=2.5)=P(x1=3 ; x2=2)+P(x1=2 ; x2=3) =(1/3)*(!/3)+(!/3)*(!/3)=2/9

P(X=3)=P(x1=3 ; x2=3) =(1/3)*(!/3) =1/9

d)

x f(x) xP(x) x2P(x)
1.0000 1/9 0.111 0.111
1.5000 2/9 0.333 0.500
2.0000 1/3 0.667 1.333
2.5000 2/9 0.556 1.389
3.0000 1/9 0.333 1.000
total 2.000 4.333
E(x) =μ= ΣxP(x) = 2.0000
E(x2) = Σx2P(x) = 4.3333
Var(x)=σ2 = E(x2)-(E(x))2= 0.3333
std deviation=         σ= √σ2 = 0.5774

from E(Xbar)=2.000

and SD(Xbar ) =0.5774

e)

as E(Xbar)=E(X)

as well SD(Xbar ) = σ /sqrt(n) =SD(X)/sqrt(2)

therefore answers are consistent


Related Solutions

Suppose X ~ N(6, 3^2). a. Compute P(X > 9.9) b. Determine the 95th percentile of...
Suppose X ~ N(6, 3^2). a. Compute P(X > 9.9) b. Determine the 95th percentile of X, that is, the constant c such that P(X < c)= 0.95 c. Find the mean and variance of Y = 2X -1
If S = 1-x/1! + x^2/2! - x^3/3! + .....   where n! means factorial(n) and x...
If S = 1-x/1! + x^2/2! - x^3/3! + .....   where n! means factorial(n) and x is a variable that will be assigned. Use matlab to compute S for x = 7 and n (number of terms) = 5.   Write the value below as the one displayed when you issue "format short" in matlab. Explain the process and result of the question.
Given a sequence x(n) for 0 ≤ n ≤ 3, where x(0)=4, x(1)=3, x(2)=2, and x(3)=1,...
Given a sequence x(n) for 0 ≤ n ≤ 3, where x(0)=4, x(1)=3, x(2)=2, and x(3)=1, evaluate your DFT X(k)
for the provided sample mean, sample size, and ppopulation SD: x= 38, n=64, SD= 2. find...
for the provided sample mean, sample size, and ppopulation SD: x= 38, n=64, SD= 2. find a 95% confidence interval for the population mean. the 95% confidence interval is from __ to __.
Let f(x)=x • 3^x a) Find formula for f^(n) •(x) for natural n (the n order...
Let f(x)=x • 3^x a) Find formula for f^(n) •(x) for natural n (the n order derivative). b) Write the Taylor series generated by f(x) in 0.
Suppose f(x,y)=(1/8)(6-x-y) for 0<x<2 and 2<y<4. a. Find p(Y<3|X=1) b. Find p(Y<3|0.5<X<1)
Suppose f(x,y)=(1/8)(6-x-y) for 0<x<2 and 2<y<4. a. Find p(Y<3|X=1) b. Find p(Y<3|0.5<X<1)
Show that (a)Sn=<(1 2),(1 3),……(1 n)>. (b)Sn=<(1 2),(2 3),……(n-1 n)> (c)Sn=<(1 2),(1 2 …… n-1 n)>
Show that (a)Sn=<(1 2),(1 3),……(1 n)>. (b)Sn=<(1 2),(2 3),……(n-1 n)> (c)Sn=<(1 2),(1 2 …… n-1 n)>
Prove via induction the following properties of Pascal’s Triangle: •P(n,2)=(n(n-1))/2 • P(n+m+1,n) = P(n+m,n)+P(n+m−1,n−1)+P(n+m−2,n−2)+···+P(m,0) for all...
Prove via induction the following properties of Pascal’s Triangle: •P(n,2)=(n(n-1))/2 • P(n+m+1,n) = P(n+m,n)+P(n+m−1,n−1)+P(n+m−2,n−2)+···+P(m,0) for all m ≥ 0
A 5th filter is described by the difference equation: 2y(n)=2 x(n)+7 x(n-1)+3 x(n-2)-8 x(n-3)+ x(n-4)-8 x(n-5)+7...
A 5th filter is described by the difference equation: 2y(n)=2 x(n)+7 x(n-1)+3 x(n-2)-8 x(n-3)+ x(n-4)-8 x(n-5)+7 y(n-1)-3 y(n-2)+5y(n-3)- y(n-4) Determine the frequency response. Plot the magnitude and the phase response of this filter. Consider the plot -π≤w≤π for 501 points. Describe the magnitude response (Low pass filter, High Pass filter, etc.) Determine the system stability. Determine the impulse response h(n). You may set the period to -100≤n≤100 Determine the unit step response for -100≤n≤100 . (Matlab)
1. Assume X ∼ N(20, 25), (a) find P(X > 25) (b) the value of x...
1. Assume X ∼ N(20, 25), (a) find P(X > 25) (b) the value of x if P(X > x) = 0.975. (c) find the values of a and b, two symmetrical values about 20 such that P(a < X < b) = 0.95. (d) If X1, X2, . . . , X100 is random sample for the distribution of X • what is the sampling distribution of the sample mean X¯? • find P(X >¯ 20.50) (e) Suppose the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT