In: Math
a)
| x | f(x) | xP(x) | x2P(x) | 
| 1.0000 | 1/3 | 0.333 | 0.333 | 
| 2.0000 | 1/3 | 0.667 | 1.333 | 
| 3.0000 | 1/3 | 1.000 | 3.000 | 
| total | 2.000 | 4.667 | |
| E(x) =μ= | ΣxP(x) = | 2.0000 | |
| E(x2) = | Σx2P(x) = | 4.6667 | |
| Var(x)=σ2 = | E(x2)-(E(x))2= | 0.6667 | |
| std deviation= | σ= √σ2 = | 0.8165 | 
from above E(X)=2
b)SD(X)=0.8165
c)P(X=1)=P(x1=1 ; x2=1) =(1/3)*(!/3) =1/9
P(X=1.5)=P(x1=1 ; x2=2)+P(x1=2 ; x2=1) =(1/3)*(!/3)+(!/3)*(!/3)=2/9
P(X=2)=P(x1=2 ; x2=2)+P(x1=3 ; x2=1)+P(x1=1 ; x2=3) =(1/3)*(!/3)+ (1/3)*(!/3)+(!/3)*(!/3)=3/9=1/3
P(X=2.5)=P(x1=3 ; x2=2)+P(x1=2 ; x2=3) =(1/3)*(!/3)+(!/3)*(!/3)=2/9
P(X=3)=P(x1=3 ; x2=3) =(1/3)*(!/3) =1/9
d)
| x | f(x) | xP(x) | x2P(x) | 
| 1.0000 | 1/9 | 0.111 | 0.111 | 
| 1.5000 | 2/9 | 0.333 | 0.500 | 
| 2.0000 | 1/3 | 0.667 | 1.333 | 
| 2.5000 | 2/9 | 0.556 | 1.389 | 
| 3.0000 | 1/9 | 0.333 | 1.000 | 
| total | 2.000 | 4.333 | |
| E(x) =μ= | ΣxP(x) = | 2.0000 | |
| E(x2) = | Σx2P(x) = | 4.3333 | |
| Var(x)=σ2 = | E(x2)-(E(x))2= | 0.3333 | |
| std deviation= | σ= √σ2 = | 0.5774 | 
from E(Xbar)=2.000
and SD(Xbar ) =0.5774
e)
as E(Xbar)=E(X)
as well SD(Xbar ) = σ /sqrt(n) =SD(X)/sqrt(2)
therefore answers are consistent