In: Math
3300 Econometics HW Set 1
DATE | Cons. | Disp.Icome |
2015-01-01 | $ 11,788.36 | $ 13,226.57 |
2015-04-01 | $ 11,887.54 | $ 13,327.81 |
2015-07-01 | $ 11,971.95 | $ 13,440.36 |
2015-10-01 | $ 12,039.65 | $ 13,471.39 |
2016-01-01 | $ 12,111.78 | $ 13,562.27 |
2016-04-01 | $ 12,214.10 | $ 13,541.45 |
2016-07-01 | $ 12,294.30 | $ 13,592.92 |
2016-10-01 | $ 12,372.73 | $ 13,685.36 |
2017-01-01 | $ 12,427.65 | $ 13,835.34 |
2017-04-01 | $ 12,515.86 | $ 13,909.77 |
2017-07-01 | $ 12,584.91 | $ 13,986.19 |
2017-10-01 | $ 12,706.37 | $ 14,065.92 |
2018-01-01 | $ 12,722.84 | $ 14,219.83 |
2018-04-01 | $ 12,842.02 | $ 14,306.61 |
2018-07-01 | $ 12,968.54 | $ 14,393.59 |
The data given in the data file in the Consumption file represent the real private consumption of the USA from Quarter I 2005 to III Quarter 2018.
Similarly, the Real Disposable Income is provided over the same time span.
Set up a regression that relates the dependent variable(Y) to the independent variable(X).
Derive Manually the coefficients of the regression. (Intercept(b1) and slope(b2)).
State the Regression equation.
Interpret the meaning of the slopes b2, in this problem.
Derive the Correlation Coefficient R^2
Derive the Standard Error of the regression
Derive the standard error of the Intercept (b1) and the standard error of the Slope (b2).
Derive the t values of the coefficients
Construct a 95% confidence interval for b1 and b2
Use a two tail α=5% level of significance, to test the confidence intervals for the slope(b2).
(Hint: All the formulas required to answer the questions are cited in chapters 2 and 3 of the textbooks. Use also the notes from the lectures).
The regression equation is defined as,
The least square estimate of intercept and slope are,
Consumption, X | X^2 | Disp.Icome, Y | X*Y | Y^2 | |
11,788.36 | 13,89,65,431.49 | 13,226.57 | 155919568.7 | 17,49,42,153.9649 | |
11,887.54 | 14,13,13,607.25 | 13,327.81 | 158434874.5 | 17,76,30,519.3961 | |
11,971.95 | 14,33,27,586.80 | 13,440.36 | 160907317.9 | 18,06,43,276.9296 | |
12,039.65 | 14,49,53,172.12 | 13,471.39 | 162190820.6 | 18,14,78,348.5321 | |
12,111.78 | 14,66,95,214.77 | 13,562.27 | 164263230.5 | 18,39,35,167.5529 | |
12,214.10 | 14,91,84,238.81 | 13,541.45 | 165396624.4 | 18,33,70,868.1025 | |
12,294.30 | 15,11,49,812.49 | 13,592.92 | 167115436.4 | 18,47,67,474.1264 | |
12,372.73 | 15,30,84,447.65 | 13,685.36 | 169325264.2 | 18,72,89,078.3296 | |
12,427.65 | 15,44,46,484.52 | 13,835.34 | 171940763.2 | 19,14,16,632.9156 | |
12,515.86 | 15,66,46,751.54 | 13,909.77 | 174092734 | 19,34,81,701.4529 | |
12,584.91 | 15,83,79,959.71 | 13,986.19 | 176014942.4 | 19,56,13,510.7161 | |
12,706.37 | 16,14,51,838.58 | 14,065.92 | 178726783.9 | 19,78,50,105.4464 | |
12,722.84 | 16,18,70,657.67 | 14,219.83 | 180916621.9 | 20,22,03,565.2289 | |
12,842.02 | 16,49,17,477.68 | 14,306.61 | 183725771.8 | 20,46,79,089.6921 | |
12,968.54 | 16,81,83,029.73 | 14,393.59 | 186663847.7 | 20,71,75,433.0881 | |
SUM | 1,85,448.60 | 2,29,45,69,710.81 | 2,06,565.38 | 2,55,56,34,602.04 | 2,84,64,76,925.47 |
Form the data values, the values are calculated as,
Now, for one unit increase in consumption, Disp.Income will increase by approximately 0.9962.
The correlation coefficient is obtained using the formula
Now, the R^2 value is,
The standard error of the regression is obtained using the formula,
Where, is estimated using the regression equation for X values,
Consumption, X | Disp.Icome, Y | Yhat | (Y-Yhat)^2 |
11,788.36 | 13,226.57 | 13198.33 | 797.57 |
11,887.54 | 13,327.81 | 13297.13 | 941.14 |
11,971.95 | 13,440.36 | 13381.22 | 3497.37 |
12,039.65 | 13,471.39 | 13448.66 | 516.46 |
12,111.78 | 13,562.27 | 13520.52 | 1743.03 |
12,214.10 | 13,541.45 | 13622.45 | 6561.28 |
12,294.30 | 13,592.92 | 13702.35 | 11974.30 |
12,372.73 | 13,685.36 | 13780.48 | 9047.68 |
12,427.65 | 13,835.34 | 13835.19 | 0.02 |
12,515.86 | 13,909.77 | 13923.07 | 176.78 |
12,584.91 | 13,986.19 | 13991.85 | 32.07 |
12,706.37 | 14,065.92 | 14112.85 | 2202.63 |
12,722.84 | 14,219.83 | 14129.26 | 8202.99 |
12,842.02 | 14,306.61 | 14247.99 | 3436.66 |
12,968.54 | 14,393.59 | 14374.03 | 382.73 |
SUM | 49512.73 |
Similarly, the standard error for intercept and slope are obtained using the formula,
T-value for intercept and slope are obtained using the formula,
Where t value is obtained using the t distribution table for and degree of freedom = n - 2 = 15 - 2 = 13
The P-value for the significance for the 95% confidence interval is obtained using the t distribution table for t = 21.8018 and df = 13,
P-value = 0.0000 < 0.05 at 5% significance level. Hence the slope is significant at % significant level.