In: Math
The number of initial public offerings of stock issued in a 10-year period and the total proceeds of these offerings (in millions) are shown in the table. Construct and interpret a 95% prediction interval for the proceeds when the number of issues is
585.
The equation of the regression line is
ModifyingAbove y with caret equals 33.634 x plus 17 comma 224.539y=33.634x+17,224.539.
Issues, x |
404 |
453 |
679 |
483 |
479 |
394 |
50 |
73 |
175 |
175 |
|
---|---|---|---|---|---|---|---|---|---|---|---|
Proceeds, y |
19,308 |
29,108 |
43,643 |
31,033 |
35,712 |
35,665 |
21,501 |
10,090 |
31,384 |
27,981 |
Construct and interpret a 95% prediction interval for the proceeds when the number of issues is
585.
Select the correct choice below and fill in the answer boxes to complete your choice.
(Round to the nearest million dollars as needed. Type your answer in standard form where "3.12 million" means 3,120,000.)
A.We can be 95% confident that when there are 585 issues, the proceeds will be between $____ and $____.
B.There is a 95% chance that the predicted proceeds given 585 issues is between $____ and $____.
X | Y | (x-x̅)² | (y-ȳ)² | (x-x̅)(y-ȳ) |
404 | 19,308 | 4556.25 | 85275990 | -623329 |
453 | 29,108 | 13572.25 | 319790.3 | 65880.75 |
679 | 43,643 | 117306.25 | 2.28E+08 | 5171921 |
483 | 31,033 | 21462.25 | 6202590 | 364858.3 |
479 | 35,712 | 20306.25 | 51401730 | 1021654 |
394 | 35,665 | 3306.25 | 50730006 | 409543.8 |
50 | 21,501 | 82082.25 | 49582722 | 2017390 |
73 | 10,090 | 69432.25 | 3.4E+08 | 4862234 |
175 | 31,384 | 26082.25 | 8074122 | -458902 |
175 | 27,981 | 26082.25 | 315282.3 | 90682.25 |
ΣX | ΣY | Σ(x-x̅)² | Σ(y-ȳ)² | Σ(x-x̅)(y-ȳ) | |
total sum | 3365 | 285425 | 384188.5 | 8.2E+08 | 12921933 |
mean | 336.5 | 28542.5 | SSxx | SSyy | SSxy |
sample size , n = 10
here, x̅ = 336.5 ȳ
= 28542.5
SSxx = Σ(x-x̅)² = 384188.5
SSxy= Σ(x-x̅)(y-ȳ) =
12921932.5
slope , ß1 = SSxy/SSxx =
33.63435527
intercept, ß0 = y̅-ß1* x̄ =
17224.53945
so, regression line is Ŷ =
17224.5395 + 33.6344 *x
SSE= (Sx*Sy - S²xy)/Sx =
385801222.01
std error ,Se = √(SSE/(n-2)) =
6944.4332
----------------
X Value= 585
Confidence Level= 95%
Sample Size , n= 10
Degrees of Freedom,df=n-2 = 8
critical t Value=tα/2 = 2.306 [using t table]
X̅ = 336.500
Σ(x-x̅)² =Sxx = 384188.500
Standard Error of the Estimate,Se= 6944.433
h Statistic = (1/n+(X-X̅)²/Sxx) = 0.261
Predicted Y (YHat) at x=585 is 36900.637
standard error, S(ŷ)=Se*√(1+h stat) = 7797.3779
margin of error,E=t*std error=t/S(ŷ)=
17980.7856
Prediction Interval Lower Limit=Ŷ -E = 18919.8517
million
Prediction Interval Upper Limit=Ŷ +E = 54881.4229
million
B.There is a 95% chance that the predicted proceeds given
585 issues is between $_18920million___ and
$__54881million__.