In: Statistics and Probability
the number of initial public offerings of stock issued in a 10-year period and the total proceeds of these offerings (in million) are shown in the table. Construct and interpret a 95% prediction interval for the proceeds when the number of issues is 576. The equation of the regression line is ý = 32.688x + 17,464.523.
Issues, x 412 458 700 483 483 392 52 75 176 170
proceeds 17,976 29,418 43,736 30,522 36,578 35,848 20,092, 11,034 31,749 28,865
construct and interpret a 95% prediction interval for the proceeds when the number of issues is 576.
select the correct choice below and fill in the answer
boxes to complete your choice.
(round to the nearest million dollars as needed. type your answer
in standard form where "3.12 million" means 3,120,000)
A. we can be 95% confident that when there are 576 issues, the proceeds will be between $____ and $_____
or
B. There is a 95% chance that the predicted proceeds given 576
issues is between $___ and $____
X | Y | X * Y | X2 | Ŷ | Sxx =Σ (Xi - X̅ )2 | Syy = Σ( Yi - Y̅ )2 | Sxy = Σ (Xi - X̅ ) * (Yi - Y̅) | |
412 | 17976 | 7406112 | 169744 | 30932.0859 | 5169.6100 | 112482993.6400 | -762557.0200 | |
458 | 29418 | 13473444 | 209764 | 32435.7458 | 13900.4100 | 699230.4400 | 98587.9800 | |
700 | 43736 | 30615200 | 490000 | 40346.3047 | 129528.0100 | 229649777.6400 | 5453996.5800 | |
483 | 30522 | 14742126 | 233289 | 33252.9523 | 20420.4100 | 3764376.0400 | 277254.5800 | |
483 | 36578 | 17667174 | 233289 | 33252.9523 | 20420.4100 | 63939214.4400 | 1142656.9800 | |
392 | 35848 | 14052416 | 153664 | 30278.3207 | 2693.6100 | 52797662.4400 | 377115.7800 | |
52 | 20092 | 1044784 | 2704 | 19164.3123 | 83001.6100 | 72076704.0400 | 2445911.3800 | |
75 | 11034 | 827550 | 5625 | 19916.1423 | 70278.0100 | 307925284.8400 | 4651921.7800 | |
176 | 31749 | 5587824 | 30976 | 23217.6566 | 26928.8100 | 10031155.8400 | -519737.5200 | |
170 | 28865 | 4907050 | 28900 | 23021.5270 | 28934.0100 | 80202.2400 | -48172.3200 | |
Total | 3401 | 285818 | 110323680 | 1557955 | 283446.3735 | 401274.9000 | 853446601.6000 | 13116978.2000 |
X̅ = Σ (Xi / n ) = 3401/10 = 340.1
Y̅ = Σ (Yi / n ) = 285818/10 = 28581.8
Estimated Error Variance (σ̂2) =
S2 = ( 853446601.6 - 32.6883 * 13116978.2 ) / 10 - 2
S2 = 53084360.3881
S = 7285.9015
Predictive Confidence Interval of
Ŷ = 17464.5228 + 32.6883X
Ŷ = 36292.9836
t(α/2) = t(0.05/2) = 2.306
X̅ = (Xi / n ) = 3401/10 = 340.1
= 36292.9836
95% Predictive confidence interval is (17593.8208
<
< 5 4992.1464)
A. we can be 95% confident that when there are 576 issues, the proceeds will be between $____ and $_____