In: Math
IRS data indicates that the tax refunds it issued this year follow the normal distribution with μ = 1,200 and σ = 200. Based on this information calculate the following probabilities.
Given,
= 1200, = 200
We convert this to standard normal as
P( X < x) = P( Z < x - / )
a)
P( 1170 < X < 1200) = P( X < 1200) - P( X < 1170)
= P( Z < 1200 - 1200 / 200) - P( Z < 1170 - 1200 / 200)
= P( Z < 0) - P( Z < -0.15)
= P( Z < 0) - ( 1 - P( Z < 0.15) )
= 0.5 - ( 1 - 0.5596)
= 0.0596
b)
P( X < 1406) = P (Z < 1406 - 1200 / 200)
= P( Z < 1.03)
= 0.8485
c)
P( X > 1598) = P( Z > 1598 - 1200 / 200)
= P( Z > 1.99)
= 1 - P( Z < 1.99)
= 1 - 0.9767
= 0.0233
d)
P( 1132 < X < 1354) = P( X < 1354) - P( X < 1132)
= P( Z < 1354 - 1200 / 200) - P( Z < 1132 - 1200 / 200)
= P( Z < 0.77) - P( Z < -0.34)
= P( Z < 0.77) - ( 1 - P( Z < 0.34) )
= 0.7794 - ( 1 - 0.6330)
= 0.4124