In: Math
A simple random sample of size
nequals=8181
is obtained from a population with
mu equals 73μ=73
and
sigma equals 18σ=18.
(a) Describe the sampling distribution of
x overbarx.
(b) What is
Upper P left parenthesis x overbar greater than 75.9 right parenthesisP x>75.9?
(c) What is
Upper P left parenthesis x overbar less than or equals 68.8 right parenthesisP x≤68.8?
(d) What is
Upper P left parenthesis 71 less than x overbar less than 77.8 right parenthesisP 71<x<77.8?
Using central limit theorem,
P( < x) = P( Z < x - / ( / sqrt(n) ) )
a)
P( > 75.9) = P( Z > 75.9 - 73 / (18 / sqrt(81) ) )
= P( Z > 1.45)
= 1 - P( Z < 1.45)
= 1 - 0.9265 (Probability calculated from Z table)
= 0.0735
b)
P( <= 68.8) = P( Z <= 68.8 - 73 / ( 18 / sqrt(81) ) )
= P( Z <= -2.1)
= 1 - P( Z < 2.1)
= 1 - 0.9821 (Probability calculated from Z table)
= 0.0179
c)
P(71 < < 77.8) = P( < 77.8) - P( < 71)
= P( Z < 77.8 - 73 / ( 18 / sqrt(81) ) ) - P( Z < 71 - 73 / ( 18 / sqrt(81) ) )
= P( Z < 2.4) - P( Z < -1)
= P( Z < 2.4) - ( 1 - P (Z < 1) )
= 0.9918 - ( 1 - 0.8413 ) (Probability calculated from Z table)
= 0.8331