Question

In: Statistics and Probability

HW8#11 A genetic experiment involving peas yielded one sample of offspring consisting of 430 green peas...

HW8#11

A genetic experiment involving peas yielded one sample of offspring consisting of 430 green peas and 168 yellow peas. Use a 0.01 significance level to test the claim that under the same​ circumstances, 27​% of offspring peas will be yellow. Identify the null​ hypothesis, alternative​ hypothesis, test​ statistic, P-value, conclusion about the null​ hypothesis, and final conclusion that addresses the original claim. Use the​ P-value method and the normal distribution as an approximation to the binomial distribution.

A. Identify the null and alternative hypotheses.

B. What is the test statistic?

   z=

   Round two decimal places as needed.

C. What is the P-value?

D. Fail to reject OR Reject the null hypothesis?

E. There is or is not sufficient evidence?

Solutions

Expert Solution

Part A

Here, we have to use Z test for the population proportion.

The null and alternative hypotheses for this test are given as below:

Null hypothesis: H0: The percentage of yellow offspring peas is 27%.

Alternative hypothesis: Ha: The percentage of yellow offspring peas is not 27%.

H0: p = 0.27 versus Ha: p ≠ 0.27

This is a two tailed test.

Part B

The test statistic formula is given as below:

Z = (p̂ - p)/sqrt(pq/n)

Where, p̂ = Sample proportion, p is population proportion, q = 1 - p, and n is sample size

p̂ = x/n

n = 168 + 430 = 598

x = number of items of interest = 168

p̂ = 168/598 = 0.280936455

p = 0.27

q = 1 – p = 1 – 0.27 = 0.73

Z = (p̂ - p)/sqrt(pq/n)

Z = (0.280936455 – 0.27)/sqrt(0.27*0.73/598)

Z = 0.6024

Test statistic = Z = 0.60

Part C

P-value = 0.5485

(by using z-table)

Part D

P-value = 0.5485 > α = 0.01

So, we fail to reject the null hypothesis

Part E

There is sufficient evidence to conclude that 27% of offspring peas will be yellow.


Related Solutions

A genetic experiment involving peas yielded one sample of offspring consisting of 418 green peas and...
A genetic experiment involving peas yielded one sample of offspring consisting of 418 green peas and 158 yellow peas. Use a 0.05 significance level to test the claim that under the same circumstances, 26 % of offspring peas will be yellow. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, conclusion about the null hypothesis, and final conclusion that addresses the original claim. Use the P-value method and the normal distribution as an approximation to the binomial distribution. What are...
A genetic experiment involving peas yielded one sample of offspring consisting of 448 green peas and...
A genetic experiment involving peas yielded one sample of offspring consisting of 448 green peas and 127 yellow peas. Use a 0.05 significance level to test the claim that under the same​ circumstances, 27% of offspring peas will be yellow. Identify the null​ hypothesis, alternative​ hypothesis, test​ statistic, P-value, conclusion about the null​ hypothesis, and final conclusion that addresses the original claim. Use the​ P-value method and the normal distribution as an approximation to the binomial distribution.
A genetic experiment involving peas yielded one sample of offspring consisting of 404404 green peas and...
A genetic experiment involving peas yielded one sample of offspring consisting of 404404 green peas and 158158 yellow peas. Use a 0.050.05 significance level to test the claim that under the same? circumstances, 2424?% of offspring peas will be yellow. Identify the null? hypothesis, alternative? hypothesis, test? statistic, P-value, conclusion about the null? hypothesis, and final conclusion that addresses the original claim. Use the? P-value method and the normal distribution as an approximation to the binomial distribution. ?P-valueequals= Round 4...
A genetic experiment involving peas yielded one sample of offspring consisting of 411 green peas and...
A genetic experiment involving peas yielded one sample of offspring consisting of 411 green peas and 172 yellow peas. Use a 0.05 significance level to test the claim that under the same​ circumstances, 25​% of offspring peas will be yellow. Identify the test​ statistic, P-value. Use the​ P-value method and the normal distribution as an approximation to the binomial distribution. I con not get the P-value or the test statistic correct.
A genetic experiment involving peas yielded one sample of offspring consisting of 428 green peas and...
A genetic experiment involving peas yielded one sample of offspring consisting of 428 green peas and 136 yellow peas. Use a 0.05 significance level to test the claim that under the same​ circumstances, 24​% of offspring peas will be yellow. Identify the null​ hypothesis, alternative​ hypothesis, test​ statistic, P-value, conclusion about the null​ hypothesis, and final conclusion that addresses the original claim. Use the​ P-value method and the normal distribution as an approximation to the binomial distribution. What are the...
A genetic experiment involving peas yielded one sample of offspring consisting of 412 green peas and...
A genetic experiment involving peas yielded one sample of offspring consisting of 412 green peas and 151 yellow peas. Use a 0.01 significance level to test the claim that under the same​circumstances, 27​% of offspring peas will be yellow. Identify the null​ hypothesis, alternative​ hypothesis, test​ statistic, P-value, conclusion about the null​ hypothesis, and final conclusion that addresses the original claim. Use the​ P-value method and the normal distribution as an approximation to the binomial distribution. What is the test...
A genetic experiment involving peas yielded one sample of offspring consisting of 420 green peas and...
A genetic experiment involving peas yielded one sample of offspring consisting of 420 green peas and 120 yellow peas. Use a 0.01 significance level to test the claim that under the same​ circumstances, 27​% of offspring peas will be yellow. Identify the null​ hypothesis, alternative​ hypothesis, test​ statistic, P-value, conclusion about the null​ hypothesis, and final conclusion that addresses the original claim. Use the​ P-value method and the normal distribution as an approximation to the binomial distribution. What are the...
A genetic experiment involving peas yielded one sample of offspring consisting of 432 green peas and...
A genetic experiment involving peas yielded one sample of offspring consisting of 432 green peas and 121 yellow peas. Use a 0.05 significance level to test the claim that under the same​ circumstances, 27​% of offspring peas will be yellow. Identify the null​ hypothesis, alternative​ hypothesis, test​ statistic, P-value, conclusion about the null​ hypothesis, and final conclusion that addresses the original claim. Use the​ P-value method and the normal distribution as an approximation to the binomial distribution. What are the...
A genetic experiment involving peas yielded one sample of offspring consisting of 420 green peas and...
A genetic experiment involving peas yielded one sample of offspring consisting of 420 green peas and 134 yellow peas. Use a 0.05 significance level to test the claim that under the same​ circumstances, 24% of offspring peas will be yellow. Identify the null​ hypothesis, alternative​ hypothesis, test​ statistic, P-value, conclusion about the null​ hypothesis, and final conclusion that addresses the original claim. Use the​ P-value method and the normal distribution as an approximation to the binomial distribution.
A genetic experiment involving peas yielded one sample of offspring consisting of 443 green peas and...
A genetic experiment involving peas yielded one sample of offspring consisting of 443 green peas and 120 yellow peas. Use a 0.05 significance level to test the claim that under the same​circumstances, 26​% of offspring peas will be yellow. Identify the null​ hypothesis, alternative​ hypothesis, test​ statistic, P-value, conclusion about the null​ hypothesis, and final conclusion that addresses the original claim. Use the​ P-value method and the normal distribution as an approximation to the binomial distribution. What are the null...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT