Question

In: Statistics and Probability

A genetic experiment involving peas yielded one sample of offspring consisting of 404404 green peas and...

A genetic experiment involving peas yielded one sample of offspring consisting of

404404

green peas and

158158

yellow peas. Use a

0.050.05

significance level to test the claim that under the same? circumstances,

2424?%

of offspring peas will be yellow. Identify the null? hypothesis, alternative? hypothesis, test? statistic, P-value, conclusion about the null? hypothesis, and final conclusion that addresses the original claim. Use the? P-value method and the normal distribution as an approximation to the binomial distribution.

?P-valueequals=

Round 4 decimal places

Solutions

Expert Solution

total peas=404+158=562
p(hat)=   158/562=0.2811      
n=   562              
          
            
.......      two tail test      
alpha=   0.05              
          
Test Statistics                  
Z=   (p(hat)-P)/sqrt(p*q/n)
=(0.2811-0.24)/sqrt(0.24*0.76/562)
=2.2835  
P-value=1-P(Z<2.2835)=   0.011199   (this p-value is for one tail to get p-value for two tail we need to multiply it by 2.)          
rounded p-value=2*0.011199=0.0224
              
Decision making                   
P-value ? Alpha   ......... Reject H0              
0.0224<0.05                  
              
there is enough evidence to support the claim that offspring peas will be different from yellow peas.

here alternate hypothesis become true as we rejected null hypothesis.                   
                   


Related Solutions

A genetic experiment involving peas yielded one sample of offspring consisting of 418 green peas and...
A genetic experiment involving peas yielded one sample of offspring consisting of 418 green peas and 158 yellow peas. Use a 0.05 significance level to test the claim that under the same circumstances, 26 % of offspring peas will be yellow. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, conclusion about the null hypothesis, and final conclusion that addresses the original claim. Use the P-value method and the normal distribution as an approximation to the binomial distribution. What are...
A genetic experiment involving peas yielded one sample of offspring consisting of 448 green peas and...
A genetic experiment involving peas yielded one sample of offspring consisting of 448 green peas and 127 yellow peas. Use a 0.05 significance level to test the claim that under the same​ circumstances, 27% of offspring peas will be yellow. Identify the null​ hypothesis, alternative​ hypothesis, test​ statistic, P-value, conclusion about the null​ hypothesis, and final conclusion that addresses the original claim. Use the​ P-value method and the normal distribution as an approximation to the binomial distribution.
A genetic experiment involving peas yielded one sample of offspring consisting of 411 green peas and...
A genetic experiment involving peas yielded one sample of offspring consisting of 411 green peas and 172 yellow peas. Use a 0.05 significance level to test the claim that under the same​ circumstances, 25​% of offspring peas will be yellow. Identify the test​ statistic, P-value. Use the​ P-value method and the normal distribution as an approximation to the binomial distribution. I con not get the P-value or the test statistic correct.
A genetic experiment involving peas yielded one sample of offspring consisting of 428 green peas and...
A genetic experiment involving peas yielded one sample of offspring consisting of 428 green peas and 136 yellow peas. Use a 0.05 significance level to test the claim that under the same​ circumstances, 24​% of offspring peas will be yellow. Identify the null​ hypothesis, alternative​ hypothesis, test​ statistic, P-value, conclusion about the null​ hypothesis, and final conclusion that addresses the original claim. Use the​ P-value method and the normal distribution as an approximation to the binomial distribution. What are the...
A genetic experiment involving peas yielded one sample of offspring consisting of 412 green peas and...
A genetic experiment involving peas yielded one sample of offspring consisting of 412 green peas and 151 yellow peas. Use a 0.01 significance level to test the claim that under the same​circumstances, 27​% of offspring peas will be yellow. Identify the null​ hypothesis, alternative​ hypothesis, test​ statistic, P-value, conclusion about the null​ hypothesis, and final conclusion that addresses the original claim. Use the​ P-value method and the normal distribution as an approximation to the binomial distribution. What is the test...
A genetic experiment involving peas yielded one sample of offspring consisting of 420 green peas and...
A genetic experiment involving peas yielded one sample of offspring consisting of 420 green peas and 120 yellow peas. Use a 0.01 significance level to test the claim that under the same​ circumstances, 27​% of offspring peas will be yellow. Identify the null​ hypothesis, alternative​ hypothesis, test​ statistic, P-value, conclusion about the null​ hypothesis, and final conclusion that addresses the original claim. Use the​ P-value method and the normal distribution as an approximation to the binomial distribution. What are the...
A genetic experiment involving peas yielded one sample of offspring consisting of 432 green peas and...
A genetic experiment involving peas yielded one sample of offspring consisting of 432 green peas and 121 yellow peas. Use a 0.05 significance level to test the claim that under the same​ circumstances, 27​% of offspring peas will be yellow. Identify the null​ hypothesis, alternative​ hypothesis, test​ statistic, P-value, conclusion about the null​ hypothesis, and final conclusion that addresses the original claim. Use the​ P-value method and the normal distribution as an approximation to the binomial distribution. What are the...
A genetic experiment involving peas yielded one sample of offspring consisting of 420 green peas and...
A genetic experiment involving peas yielded one sample of offspring consisting of 420 green peas and 134 yellow peas. Use a 0.05 significance level to test the claim that under the same​ circumstances, 24% of offspring peas will be yellow. Identify the null​ hypothesis, alternative​ hypothesis, test​ statistic, P-value, conclusion about the null​ hypothesis, and final conclusion that addresses the original claim. Use the​ P-value method and the normal distribution as an approximation to the binomial distribution.
4. A genetic experiment involving peas yielded one sample of offspring consisting of 408 green peas...
4. A genetic experiment involving peas yielded one sample of offspring consisting of 408 green peas and 124 yellow peas. Use a 0.05 significance level to test the claim that under the same​ circumstances, 24​% of offspring peas will be yellow. Identify the null​ hypothesis, alternative​ hypothesis, test​ statistic, P-value, conclusion about the null​ hypothesis, and final conclusion that addresses the original claim. Use the​ P-value method and the normal distribution as an approximation to the binomial distribution. ___________________________ What...
HW8#11 A genetic experiment involving peas yielded one sample of offspring consisting of 430 green peas...
HW8#11 A genetic experiment involving peas yielded one sample of offspring consisting of 430 green peas and 168 yellow peas. Use a 0.01 significance level to test the claim that under the same​ circumstances, 27​% of offspring peas will be yellow. Identify the null​ hypothesis, alternative​ hypothesis, test​ statistic, P-value, conclusion about the null​ hypothesis, and final conclusion that addresses the original claim. Use the​ P-value method and the normal distribution as an approximation to the binomial distribution. A. Identify...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT