In: Economics
Discuss in detail any technological development that led to the Agricultural Revolutions.
The Agricultural Revolution, the unprecedented increase in agricultural production in Britain between the mid-17th and late 19th centuries, was linked to such new agricultural practices as crop rotation, selective breeding, and a more productive use of arable land.
The Agricultural Revolution was the unprecedented increase in agricultural production in Britain due to increases in labor and land productivity between the mid-17th and late 19th centuries. Agricultural output grew faster than the population over the century to 1770 and thereafter productivity remained among the highest in the world. This increase in the food supply contributed to the rapid growth of population in England and Wales, from 5.5 million in 1700 to over 9 million by 1801, although domestic production gave way to food imports in the 19th century as population more than tripled to over 32 million. The rise in productivity accelerated the decline of the agricultural share of the labor force, adding to the urban workforce on which industrialization depended. The Agricultural Revolution has therefore been cited as a cause of the Industrial Revolution.
Crop Rotation
One of the most important innovations of the Agricultural Revolution was the development of the Norfolk four-course rotation, which greatly increased crop and livestock yields by improving soil fertility and reducing fallow.
Crop rotation is the practice of growing a series of dissimilar types of crops in the same area in sequential seasons to help restore plant nutrients and mitigate the build-up of pathogens and pests that often occurs when one plant species is continuously cropped. Rotation can also improve soil structure and fertility by alternating deep-rooted and shallow-rooted plants. The Norfolk System, as it is now known, rotates crops so that different crops are planted with the result that different kinds and quantities of nutrients are taken from the soil as the plants grow. An important feature of the Norfolk four-field system was that it used labor at times when demand was not at peak levels. Planting cover crops such as turnips and clover was not permitted under the common field system because they interfered with access to the fields and other people’s livestock could graze the turnips.
Other Practices
Certain practices that contributed to a more productive use of land intensified, for example converting some pasture land into arable land and recovering fen land and some pastures. It is estimated that the amount of arable land in Britain grew by 10-30% through these land conversions. Other developments came from Flanders and and the Netherlands, where due to the large and dense population, farmers were forced to take maximum advantage of every bit of usable land. The region became a pioneer in canal building, soil restoration and maintenance, soil drainage, and land reclamation technology. Dutch experts like Cornelius Vermuyden brought some of this technology to Britain. Finally, water-meadows were utilized in the late 16th to the 20th centuries and allowed earlier pasturing of livestock after they were wintered on hay. This increased livestock yields, giving more hides, meat, milk, and manure as well as better hay crops.
An important factor of the Agricultural Revolution was the invention of new tools and advancement of old ones, including the plough, seed drill, and threshing machine, to improve the efficiency of agricultural operations.
Agricultural Revolution: Mechanization
The mechanization and rationalization of agriculture was a key factor of the Agricultural Revolution. New tools were invented and old ones perfected to improve the efficiency of various agricultural operations.
The basic plough with coulter, ploughshare, and moldboard remained in use for a millennium. Major changes in design did not become common until the Age of Enlightenment, when there was rapid progress. The Dutch acquired the iron tipped, curved moldboard, adjustable depth plough from the Chinese in the early 17th century. It had the ability to be pulled by one or two oxen compared to the six or eight needed by the heavy-wheeled northern European plough. The Dutch plough was brought to Britain by Dutch contractors hired to drain East Anglian fens and Somerset moors. The plough was extremely successful on wet, boggy soil, but soon was used on ordinary land. In 1730, Joseph Foljambe in Rotherham, England, used new shapes as the basis for the Rotherham plough, which also covered the moldboard with iron. Unlike the heavy plough, the Rotherham (or Rotherham swing) plough consisted entirely of the coulter, moldboard, and handles. By the 1760s Foljambe was making large numbers of these ploughs in a factory outside of Rotherham, using standard patterns with interchangeable parts. The plough was easy for a blacksmith to make and by the end of the 18th century it was being made in rural foundries. By 1770, it was the cheapest and best plough available. It spread to Scotland, America, and France. It may have been the first plough to be widely built in factories and the first to be commercially successful
A threshing machine or thresher is a piece of farm equipment that threshes grain: removes the seeds from the stalks and husks by beating the plant to make the seeds fall out. Before such machines were developed, threshing was done by hand with flails and was very laborious and time-consuming, taking about one-quarter of agricultural labor by the 18th century. Mechanization of this process removed a substantial amount of drudgery from farm labor. The first threshing machine was invented circa 1786 by the Scottish engineer Andrew Meikle and the subsequent adoption of such machines was one of the earlier examples of the mechanization of agriculture.