In: Statistics and Probability
Suppose that the average price of a 5 year old used car is $16,230 with a standard deviation of $4,740. Assume that the price follows a normal distribution, find the following
Solution :
Given that,
mean = =16,230
standard deviation = =27
A ) P( x < 19,000)
P ( x - / ) < ( 19,000 - 16,230 / 4,740)
P ( z < 2770 / 4,740 )
P ( z < 0.58 )
Using z table
= 0.7190
Probability = 0.7190
B ) P(13000 < x < 18,000)
P( 13,000 - 16,230 / 4,740)< ( x - / ) < ( 18,000 - 16,230 / 4,740)
P ( - 3230 / 4,740 < z < 1770 / 4,740 )
P ( - 0.68 < z < 0.37 )
P ( z < 0.37 ) - P ( z < - 0.68 )
Using z table
= 0.6443 - 0.2483
= 0.3960
Probability = 0.3960
C ) P(13000 < x < 16,000)
P( 11,000 - 16,230 / 4,740)< ( x - / ) < ( 16,000 - 16,230 / 4,740)
P ( - 5230 / 4,740 < z < - 230 / 4,740 )
P ( - 1.10 < z <- 0.05 )
P ( z < - 0.05 ) - P ( z < - 1.10 )
Using z table
= 0.4801 - 0.1357
= 0.3444
Probability = 0.3444
D ) P( x > 20,000)
= 1 - P( x < 20,000)
= 1 - P ( x - / ) < ( 20,000 - 16,230 / 4,740)
= 1 - P ( z < 3770 / 4,740 )
= 1 - P ( z < 0.79 )
Using z table
= 1 - 0.7852
= 0.2148
Probability = 0.2148
E ) Using standard normal table,
P(Z > z) = 10%
1 - P(Z < z) = 0.10
P(Z < z) = 1 - 0.10 = 0.90
P(Z < 1.282) = 0.90
z = 1.28
Using z-score formula,
x = z * +
x = 1.28 * 4740 + 16230
= 22297.2
To pay for this car $ 22297.2