In: Computer Science
Using the definition of Θ notation, prove that (3n + 13)(7n + 2)(log(1024n2 + 100)) ∈ Θ(n2logn).
By definition of big-Theta (Θ):
f(n) = Θ(g(n)) iff there are three positive constants c1, c2 and n0 such that
c1|g(n)| ≤ |f(n)| ≤ c2|g(n)| for all n ≥ n0 -------------------------- (i)
Here f(n) = (3n + 13)(7n + 2)(log(1024n2 + 100))
Proof:
When n >= 32,
(3n + 13)(7n + 2)(log(1024n2 + 100)) <= (3n + 13n)(7n + 2n)(log(1024n2 + 1024n2))
(3n + 13)(7n + 2)(log(1024n2 + 100)) <= (3n + 13n)(7n + 2n)(log(2(1024n2))
(3n + 13)(7n + 2)(log(1024n2 + 100)) <= (16n)(9n)(log2 + log1024n2)
(3n + 13)(7n + 2)(log(1024n2 + 100)) <= (144n2)(log2 + 2log32n)
(3n + 13)(7n + 2)(log(1024n2 + 100)) <= (144n2)(log32n + 2log32n)
(3n + 13)(7n + 2)(log(11024n2 + 100)) <= (144n2)(3log32n)
(3n + 13)(7n + 2)(log(1024n2 + 100)) <= 432(n2)(log32n)
(3n + 13)(7n + 2)(log(1024n2 + 100)) <= 432(n2)(log32 + logn)
(3n + 13)(7n + 2)(log(11024n2 + 100)) <= 432(n2)(logn + logn) ......... {as n >= 32}
(3n + 13)(7n + 2)(log(1024n2 + 100)) <= 432(n2)(2logn)
(3n + 13)(7n + 2)(log(1024n2 + 100)) <= 864(n2logn)
When n >= 1
(3n)(7n)(logn2) <= (3n + 13)(7n + 2)(log(1024n2 + 100))
21n2(logn2) <= (3n + 13)(7n + 2)(log1024n2 + 100))
42n2(logn) <= (3n + 13)(7n + 2)(log(1024n2 + 100))
Thus from here, we can conclude that,
42(n2logn) <= (3n + 13)(7n + 2)(log(1024n2 + 100)) <= 864(n2logn) for all n >= 32
So here g(n) = n2logn and
c1 = 42 , c2 = 864 and n0 = 32
So, from (i):
f(n) = Θ(g(n)
(3n + 13)(7n + 2)(log(1024n2 + 100)) = Θ(n2) for all n >= 32