Question

In: Chemistry

A sample of sodium carbonate unknown is dissolved in 50.0 mL of water. After performing experiment...

A sample of sodium carbonate unknown is dissolved in 50.0 mL of water. After performing experiment 3, the student determines that the second equivalence point occurs at 32.86 mL of 0.1115 M HCl. What is the theoretical pH of the solution after 16.43 mL of HCl has been added. Report your answer to two significant figures. (HINT - refer to the lab procedure and posted notes for the correct way to approach this problem)

Solutions

Expert Solution

volume HCl to reach second equivalence point = 32.86 ml

Volume to reach first equivalence point = 32.86 ml/2 = 16.43 ml

So we have to calculate pH at Ist equivalence point

pH at first equivalence point for a diprotic acid = 1/2(pKa1 + pKa2)

taking values for pKa1 and pKa2 for H2CO3

So, theoretical pH,

pH after adding 16.43 ml HCl = 1/2(6.35 + 10.33)

                                                = 8.34


Related Solutions

A 1.31 gram sample of an unknown monoprotic acid is dissolved in 50.0 mL of water...
A 1.31 gram sample of an unknown monoprotic acid is dissolved in 50.0 mL of water and titrated with a a 0.496 M aqueous sodium hydroxide solution. It is observed that after 9.16 milliliters of sodium hydroxide have been added, the pH is 7.227 and that an additional 14.6 mL of the sodium hydroxide solution is required to reach the equivalence point. (1) What is the molecular weight of the acid? ____ g/mol (2) What is the value of Ka...
A solution contains 10.75g of an unknown compound dissolved in 50.0 mL of water. (Assume a...
A solution contains 10.75g of an unknown compound dissolved in 50.0 mL of water. (Assume a density of 1.00 g/mL for water.) The freezing point of the solution is -3.38 C. The mass percent composition of the compound is 60.98% C, 11.94% H, and the rest is O. -What is the molecular formula of the compound? Express your answer as a molecular formula..
A 0.4528 g sample of a pure carbonate, XnCO3(s) was dissolved in 50.0 mL of 0.1400...
A 0.4528 g sample of a pure carbonate, XnCO3(s) was dissolved in 50.0 mL of 0.1400 M HCl(aq). The excess HCl(aq) was back titrated with 24.60 mL of 0.0980 M NaOH(aq). How many moles of HCl react with the carbonate? What is the identity of the cation, X?
A solution contains 12.00 g of unknown compound (non-electrolyte) dissolved in 50.0 mL of water. (Assume...
A solution contains 12.00 g of unknown compound (non-electrolyte) dissolved in 50.0 mL of water. (Assume a density of 1.00 g/mL for water.) The freezing point of the solution is -4.95 ∘C. The mass percent composition of the compound is 53.31% C, 11.19% H, and the rest is O. Part A What is the molecular formula of the compound? Express your answer as a molecular formula.
A 0.1276 g sample of an unknown monoprotic acid was dissolved in 25.0 mL of water...
A 0.1276 g sample of an unknown monoprotic acid was dissolved in 25.0 mL of water and titrated with 0.0633 M NaOH solution. The volume of base required to bring the solution to the equivalence point was 18.4 mL. (a) Calculate the molar mass of the acid. (b) After 10.0 mL of base had been added during the titration, the pH was determined to be 5.87. What is the Ka of the unknown acid? (10 points)
A sample of unknown acid is dissolved into 100-mL of water (assume negligible volume change) and...
A sample of unknown acid is dissolved into 100-mL of water (assume negligible volume change) and divided into two equal volumes. One flask, labeled as flask “a”, is titrated with 15.00ml to end point with 0.20 M NaOH. The second flask, labeled as flask “b”, is not titrated. Which of the following is false? a)Flask “a” contains some conjugate base of the acid before titration b) The concentration of A- in the titrated flask “a” is equal to the concentration...
After dissolving in 50.0 mL of good water, the zinc in a 0.422 g sample of...
After dissolving in 50.0 mL of good water, the zinc in a 0.422 g sample of foot powder was titrated at a pH=12.0 with 26.67 mL of a 0.01222 M EDTA solution. Calculate the % Zn in this sample and the ppm of Zn in the original foot powder sample.
6. Sodium carbonate (1.3579 g) was dissolved in deionized water to give a solution with a...
6. Sodium carbonate (1.3579 g) was dissolved in deionized water to give a solution with a total volume of 250.0 mL. What was the pH of the resulting solution? Hint: For carbonic acid, pKa1 = 6.351 and pKa2 = 10.329.
Sodium carbonate (2.4134 g) is dissolved in enough deionized water to give a solution with a...
Sodium carbonate (2.4134 g) is dissolved in enough deionized water to give a solution with a total volume of 250.0 mL. What is the pH of the resulting solution? Hint: For carbonic acid, pKa1 = 6.351 and pKa2 = 10.329. What is the equilibrium concentration of H2CO3 in the solution? calculate the value of alpha HCO3-
Sodium carbonate (2.4134 g) is dissolved in enough deionized water to give a solution with a...
Sodium carbonate (2.4134 g) is dissolved in enough deionized water to give a solution with a total volume of 250.0 mL. What is the pH of the resulting solution? Hint: For carbonic acid, pKa1 = 6.351 and pKa2 = 10.329. What is the equilibrium concentration of H2CO3 in the solution? calculate the value of alpha HCO3-
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT