Question

In: Statistics and Probability

The number of earthquakes that occur per week in California follows a Poisson distribution with a...

The number of earthquakes that occur per week in California follows a Poisson distribution with a
mean of 1.5.
(a) What is the probability that an earthquake occurs within the first week? Show by hand and
provide the appropriate R code.
(b) What is the expected amount of time until an earthquake occurs?
(c) What is the standard deviation of the amount of time until two earthquakes occur?
(d) What is the probability that it takes more than a month to observe 4 earthquakes? Show by hand
(you may simply leave it as an integral) and provide the appropriate R code.
(e) What is the median amount of time it takes for 5 earthquakes to occur? Show by hand (you may
simply leave it as an integral, but be sure to explain how to find the median) and provide the
appropriate R code.

Solutions

Expert Solution


Related Solutions

Suppose the number of earthquakes occurring in an area approximately follows a Poisson distribution with an...
Suppose the number of earthquakes occurring in an area approximately follows a Poisson distribution with an average rate of 2 earthquakes every year. a.) Find the probability that there will be 1 to 3 (inclusive) earthquakes during the next year in this area. b.) Find the probability that there will be exactly 5 earthquakes during the next 3 year period. c.) Consider 10 randomly selected years during last century. What is the probability that there will be at least 3...
The number of hits to a website follows a Poisson process. Hits occur at the rate...
The number of hits to a website follows a Poisson process. Hits occur at the rate of 0.8 per minute between​ 7:00 P.M. and 9​:00 P.M. Given below are three scenarios for the number of hits to the website. Compute the probability of each scenario between 8:39 P.M. and 8​:47 P.M. Interpret each result. ​(a) exactly seven P(7)= (Round to four decimal places as​ needed.) ​(b) fewer than seven ​(c) at least seven ​ ​(Round to four decimal places as​...
The number of views of a page on a Web site follows a Poisson distribution with...
The number of views of a page on a Web site follows a Poisson distribution with a mean of 1.5 per minute. (i) What is the probability of no views in a minute? (ii) What is the probability of two or fewer views in 10 minutes? (iii) What is the probability of two or fewer views in 2 hours?
Suppose that in a certain region of California, earthquakes occur at the average rate of 7...
Suppose that in a certain region of California, earthquakes occur at the average rate of 7 per year. (a) What is the probability that in exactly three of the next eight years, no earthquakes occur? (b) What is the **expect**ed number of years to wait until we have a year with exactly 7 earthquakes? (c) In the next century, how many years would you **expect** to see with more than 10 earthquakes? Hint: When you see the word "expect" you...
The number of airplane landings at a small airport follows a Poisson distribution with a mean...
The number of airplane landings at a small airport follows a Poisson distribution with a mean rate of 3 landings every hour. 4.1 (6%) Compute the probability that 3 airplanes arrive in a given hour? 4.2 (7%) What is the probability that 8 airplanes arrive in three hours? 4.3 (7%) What is the probability that more than 3 airplanes arrive in a period of two hours?
The number of people arriving at an emergency room follows a Poisson distribution with a rate...
The number of people arriving at an emergency room follows a Poisson distribution with a rate of 9 people per hour. a) What is the probability that exactly 7 patients will arrive during the next hour? b. What is the probability that at least 7 patients will arrive during the next hour? c. How many people do you expect to arrive in the next two hours? d. One in four patients who come to the emergency room in hospital. Calculate...
The number of people crossing at a certain traffic light follows a Poisson distribution with a...
The number of people crossing at a certain traffic light follows a Poisson distribution with a mean of 6 people per hour. An investigator is planning to count the number of people crossing the light between 8pm and 10pm on a randomly selected 192 days. Let Y be the average of the numbers of people to be recorded by the investigator. What is the value of E[Y ]? A. 6 B. 12 C. 1152 D. 0.03125. What is the value...
The number of people arriving at an emergency room follows a Poisson distribution with a rate...
The number of people arriving at an emergency room follows a Poisson distribution with a rate of 7 people per hour. a. What is the probability that exactly 5 patients will arrive during the next hour? (3pts) b. What is the probability that at least 5 patients will arrive during the next hour? (5pts) c. How many people do you expect to arrive in the next two hours? (4pts) d. One in four patients who come to the emergency room...
The number of complaints received by a company each month follows a Poisson distribution with mean...
The number of complaints received by a company each month follows a Poisson distribution with mean 6. (a) Calculate the probability the company receives no complaint in a certain week. (b) Calculate the probability the company receives more than 4 complaints in a 2-week period. (c) Over a certain month, calculate the probability the company receives fewer complaints than it usually does with respect to its monthly average.
The number of calls that come into a small mail-order company follows a Poisson distribution. Currently,...
The number of calls that come into a small mail-order company follows a Poisson distribution. Currently, these calls are serviced by a single operator. The manager knows from past experience that an additional operator will be needed if the rate of calls exceeds 15 per hour. The manager observes that 6 calls came into the mail-order company during a randomly selected 15-minute period. a. If the rate of calls is actually 20 per hour, what is the probability that 9...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT