Question

In: Math

Find the Laplace transforms: F(s)=L{f(t)} of the function f(t)=(8−t)(u(t−2)−u(t−5)), for s≠0. F(s)=L{f(t)}=

Find the Laplace transforms:

F(s)=L{f(t)} of the function f(t)=(8−t)(u(t−2)−u(t−5)), for s≠0.

F(s)=L{f(t)}=

Solutions

Expert Solution


Related Solutions

1) Find the Laplace transform of f(t)=−(2u(t−3)+4u(t−5)+u(t−8)) F(s)= 2) Find the Laplace transform of f(t)=−3+u(t−2)⋅(t+6) F(s)=...
1) Find the Laplace transform of f(t)=−(2u(t−3)+4u(t−5)+u(t−8)) F(s)= 2) Find the Laplace transform of f(t)=−3+u(t−2)⋅(t+6) F(s)= 3) Find the Laplace transform of f(t)=u(t−6)⋅t^2 F(s)=
Find the laplace transform of the following functions, using the definition of Laplace transforms: f(t)=-2cos4t f(t)=2...
Find the laplace transform of the following functions, using the definition of Laplace transforms: f(t)=-2cos4t f(t)=2 sin^2(t) g(t)=3e^tcos(t)
Use Laplace Transforms to solve the following IVPs . y′′+9y={2−t ,0} piecewise function 0≤t<2 , t≥2...
Use Laplace Transforms to solve the following IVPs . y′′+9y={2−t ,0} piecewise function 0≤t<2 , t≥2 ;y(0)=1 ,y′(0)=0
Find f(t) if L(f)=s/(s^2+16)^2.
Find f(t) if L(f)=s/(s^2+16)^2.
Find the Laplace Transform of the functions t , 0 ≤ t < 1 (a) f(x)...
Find the Laplace Transform of the functions t , 0 ≤ t < 1 (a) f(x) =     2 − t , 1 ≤ t < 2 0 , t ≥ 2 (b) f(t) = 12 + 2 cos(5t) + t cos(5t) (c) f(t) = t 2 e 2t + t 2 sin(2t)
y'' - y = e^(-t) - (2)(t)(e^(-t)) y(0)= 1 y'(0)= 2 Use Laplace Transforms to solve....
y'' - y = e^(-t) - (2)(t)(e^(-t)) y(0)= 1 y'(0)= 2 Use Laplace Transforms to solve. Sketch the solution or use matlab to show the graph.
Find the Laplace transform of the following functions. (a)  f (t)  =  { 6 0  < ...
Find the Laplace transform of the following functions. (a)  f (t)  =  { 6 0  <  t  ≤  4 8 t  ≥  4 (b)  f (t)  =  { t2 0  ≤  t  <  3 0 t  ≥  3 (c)  f (t)  =  { 0 0  ≤  t  <  π/4 cos[7(t − π/4)] t  ≥  π/4
1) Find y as a function of t if 9y′′+24y′+32y=0, y(0)=5,y′(0)=8. y(t)= 2) Find y as...
1) Find y as a function of t if 9y′′+24y′+32y=0, y(0)=5,y′(0)=8. y(t)= 2) Find y as a function of x if y′′′+16y′=0, y(0)=−5,  y′(0)=−32,  y′′(0)=−32. y(x)= 3) Find y as a function of t if 9y′′−12y′+40y=0, y(1)=5,y′(1)=9. y=
Find the solution to the heat equation on 0 < x < l, with u(0, t)...
Find the solution to the heat equation on 0 < x < l, with u(0, t) = 0, ux(l, t) = 0, and u(x, 0) = phi(x). This is sometimes called a "mixed" boundary condition.
Solve the following IVP specifically using the Laplace transform method (d^3)x/d(t^3)+x=e^(-t)u(t)    f(0)=0 f'(0)=0    f''(0)=0...
Solve the following IVP specifically using the Laplace transform method (d^3)x/d(t^3)+x=e^(-t)u(t)    f(0)=0 f'(0)=0    f''(0)=0 where u(t) is the Heaviside step function
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT