1) Find the Laplace transform of
f(t)=−(2u(t−3)+4u(t−5)+u(t−8))
F(s)=
2) Find the Laplace transform of f(t)=−3+u(t−2)⋅(t+6)
F(s)=
3) Find the Laplace transform of f(t)=u(t−6)⋅t^2
F(s)=
Let f(t)=5t2−t.
a) Find f(t+h):
b) Find f(t+h)−f(t):
c) Find f(t+h)−f(t)/h: side note: (f(t+h)=f(t) is on top of
fraction and h is on bottom)
d) Find f′(t):
pls circle the 4 answers
Find the derivative of the function
f(t)=arccsc〖(-t^2)〗
f(x)=arccot√x
y=ln〖t^2 〗-arctan〖t/2〗
f(x)=arcsecx+arccscx
y=arctan〖x/2〗+1/(2(x^2+4))
Use implicit differentiation to find an equation of
the tangent line the graph of the equation at the given
point.
arctan(x+y)=y^2+π/4, (1,0)
3. Use Matlab to find the partial fraction expansion of the
functions below.
a) F(s)=16(s+2)/((s+4)(s2+6s+9))
show your Matlab commands and answers in the space below
b)
F(s)=(s2+2s+2)/((s+1)2(s+4)2)
show your Matlab commands and answers in the space below
1.) Use the product rule to find the derivative
of
(−10x6−7x9)(3ex+3)
2.) If
f(t)=(t2+5t+8)(3t2+2) find f'(t)
Find f'(4)
3.) Find the derivative of the function
g(x)=(4x2+x−5)ex
g'(x)=
4.) If f(x)=(5−x2) /
(8+x2) find:
f'(x)=
5.) If f(x)=(6x2+3x+4) / (√x) ,
. then:
f'(x) =
f'(1) =
6.) Find the derivative of the function
g(x)=(ex) / (3+4x)
g'(x)=
7.)
Differentiate: y=(ln(x)) /( x6)
(dy) / (dx) =
8.) Given that
f(x)=x7h(x)
h(−1)=2
h'(−1)=5
Calculate f'(−1)
9.) The dose-response for a specific...
For the following production functions, find the returns to
scales.
1. F(K,L)=K^0.3L^0.7
2. F(K,L)=2K+L
3. F(K,L)=KL
4. F(K,L)=K^0.2L^0.3
An explanation on how to do this, would be appreciated!