Question

In: Chemistry

1. If the enzyme-catalyzed reaction E + S ↔ ES ↔ E + P takes place...

1. If the enzyme-catalyzed reaction E + S ↔ ES ↔ E + P takes place near Vmax to the enzyme (E), what can be concluded about the relative concentrations of S and ES?

a) High [S], [ES] is low

b) High [S], [ES] are at their maximum

c) Low [S], [ES] is low

d) Low [S], [ES] is at its maximum

2. Which of the following statements about Michaelis-Menten kinetics is correct?

a) Km = the substrate concentration required for the reaction to reach Vmax

b) Km = dissociation constant of the enzyme-substrate complex

c) Km = is a measure of the substrate's affinity for the enzyme

d) Km = expression of reaction rate

3. What is the Km value if the substrate concentration is 25 mM and the initial reaction rate is half Vmax for an enzyme catalyzed reaction?

a) Km = 50 mM

b) Km = 12.5 mM

c) Km = 625 mM

d) Km = 25 mM

Solutions

Expert Solution

The solution of given question is in picture.


Related Solutions

1. Starting from the enzyme-catalyzed reaction: S -> P Derive the (a) Michaelis-Menten Equation (b) starting...
1. Starting from the enzyme-catalyzed reaction: S -> P Derive the (a) Michaelis-Menten Equation (b) starting from the Michaelis-Menten equation, derive the Lineweaver-Burker plot. Provide brief explanation in each step. 2. Predict the optimum pH and temperature for human saliat amylase. Why did you arrive on the prediction?
For the reaction E+S > ES> P, the michaelis menten constant, Km, is actually a summary...
For the reaction E+S > ES> P, the michaelis menten constant, Km, is actually a summary of three terms. What are they? How is Km determined graphically?
A simple enzyme reaction can be described by the equation E+SESE+P, where E is the enzyme,...
A simple enzyme reaction can be described by the equation E+SESE+P, where E is the enzyme, S the substrate, P the produce, and ES the enzyme substrate complex. Write a corresponding equation describing the workings of a transport (T) that mediates the transport of a solute (S) down its concentration gradient. What does this equation tell you about the function of a transporter? Why would this equation be an inappropriate choice to represent the function of a channel?
An enzyme catalyzed reaction has a Km of 3.76 mM and a Vmax of 6.72 nM/s....
An enzyme catalyzed reaction has a Km of 3.76 mM and a Vmax of 6.72 nM/s. What is the reaction velocity in nM/s, when the substrate concentrations are: A. 0.500 mM B. 15.6 mM C. 252 mM D. Now assume you have added a competitive inhibitor that has a concentration of 15.6 µM with a KI of 7.30 µM to the enzyme in question 9. Calculate the velocity at the same substrate concentrations as above: E. 0.500 mM F. 15.6...
Consider the following reaction: S↔P where the rate constant for the forward reaction is k1, and...
Consider the following reaction: S↔P where the rate constant for the forward reaction is k1, and the rate constant for the reverse reaction is k2, and Keq= [P]/[S] Which of the following would be affected by an enzyme? Please answer yes or no and give a short explanation (5-20 words maximally) a) decreased Keq b) increased k1 c) increased Keq d) increased Δ G# e) decreased Δ G# f) increased k2 g) more negative Δ G0
Imagine that you are observing an enzyme-catalyzed reaction in the laboratory. The reaction is progressing as...
Imagine that you are observing an enzyme-catalyzed reaction in the laboratory. The reaction is progressing as expected. As you periodically add more enzyme, the reaction increases proportionally until suddenly it stops increasing. At this point, no matter how much more enzyme that you add, the reaction rate does not change. Assuming no other chemicals have been added or changed, explain why the reaction rate has leveled off.
25) Am enzyme-catalyzed reaction proceeds at a faster rate than an uncatalyzed reaction because the enzyme...
25) Am enzyme-catalyzed reaction proceeds at a faster rate than an uncatalyzed reaction because the enzyme lowers the difference in free energy between the reactants and the products. a. True b. False
To the nearest hundredths, what is the pH at the end of an enzyme-catalyzed reaction if...
To the nearest hundredths, what is the pH at the end of an enzyme-catalyzed reaction if it were carried out in a 0.1 M buffer initially at pH 6.65, and 0.006 M of acid (H+) was produced during the reaction? (The buffer used was a polyprotic acid of the general form: H3A; the three pKas of this polyprotic acid are 2.11, 6.65, and 11.33.)
To the nearest hundredths, what is the pH at the end of an enzyme-catalyzed reaction if...
To the nearest hundredths, what is the pH at the end of an enzyme-catalyzed reaction if it were carried out in a 0.1 M buffer initially at pH 6.73, and 0.004 M of acid (H+) was produced during the reaction? (The buffer used was a polyprotic acid of the general form: H3A; the three pKas of this polyprotic acid are 2.17, 6.73, and 11.27.)
To the nearest hundredths, what is the pH at the end of an enzyme-catalyzed reaction if...
To the nearest hundredths, what is the pH at the end of an enzyme-catalyzed reaction if it were carried out in a 0.1 M buffer initially at pH 6.73, and 0.004 M of acid (H+) was produced during the reaction? (The buffer used was a polyprotic acid of the general form: H3A; the three pKas of this polyprotic acid are 2.17, 6.73, and 11.27.)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT